“The MindShare PCT Express System Architecture book is expertly aimed at increasing engineer’s

knowledge of the PCle specification, leading to increased productivity and time to market.”

—David Churchill «i% Agilent Technologies

CI EXPRESS
YSTEM
RCHITECTURE

p
. MINDSHARE

BRINGING LIFE TO KNOWLEDGE

Ravi Budruk
Don Anderson

Tom Shanley

Edited by Joe Winkles

PC SYSTEM

ARCHITECTURE
S ERIES

/
MINDSHARE \world-class technical training

BRINGING LIFE TO KNOWLEDGE

Are your company'’s technical training needs being addressed in the most effective manner?

MindShare has over 25 years experience in conducting technical training on cutting-edge technologies. We
understand the challenges companies have when searching for quality, effective training which reduces the
students’ time away from work and provides cost-effective alternatives. MindShare offers many flexible solutions
to meet those needs. Our courses are taught by highly-skilled, enthusiastic, knowledgeable and experienced
instructors. We bring life to knowledge through a wide variety of learning methods and delivery options.

training that fits your needs

MindShare recognizes and addresses your company’s technical training issues with:

» Scalable cost training « Customizable training options + Reducing time away from work
» Just-in-time training - Overview and advanced topic courses < Training delivered effectively globally
» Training in a classroom, at your cubicle or home office « Concurrently delivered multiple-site training

MindShare training courses expand your technical skillset

= PCl Express 2.0® & Serial Attached SCSI (SAS)

= Intel Core 2 Processor Architecture = DDR2/DDR3 DRAM Technology

= AMD Opteron Processor Architecture = PC BIOS Firmware

= Intel 64 and I1A-32 Software Architecture = High-Speed Design

& Intel PC and Chipset Architecture > & Windows Internals and Drivers
izati ' -undamentals

bringing lite
to knowledge.

real-world tech training put into practice worldwide

*PCl Express ® is a registered trademark of the PCISIG A

MindShare Learning Options

MindShare
Classroom

@ In-House Training

Public Training

Classroom Training

Invite MindShare to train

you in-house, or sign-up to
attend one of our many public
classes held throughout the
year and around the world.
No more boring classes, the
‘MindShare Experience' is
sure to keep you engaged.

Engage MindShare

MindShare
Virtual Classroom

Virtual In-House Training

=

Virtual Public Training

Virtual Classroom Training

The majority of our courses
live over the web in an inter-
active environment with WebEx
and a phone bridge. We deliver
training cost-effectively across
multiple sites and time zones.
Imagine being trained in your
cubicle or home office and
avoiding the hassle of travel.
Contact us to attend one of
our public virtual classes.

MindShare
elLearning

Intro eLearning
Modules
Comprehensive
eLearning Modules

eLearning Module Training

MindShare is also an eLearning
company. Our growing list of
interactive elL.earning modules
include:
¢ Intro to Virtualization
Technology
¢ Intro to 10 Virtualization

¢ Intro to PCI Express 2.0
Updates

* PCI Express 2.0
*« USB 2.0

« AMD Opteron Processor
Architecture

¢ Virtualization Technology
...and more

MindShare

PCI Expuess
SysTEM
ARCHITRCTURE] 50

EI Books
@ eBooks

MindShare Press

Purchase our books and
eBooks or publish your
own content through us.
MindShare has authored
over 25 books and the list
is growing. Let us help
make your book project

a successful one.

Have knowledge that you want to bring to life? MindShare will work with you to “Bring Your Knowledge to Life.”
Engage us to transform your knowledge and design courses that can be delivered in classroom or virtual class-
room settings, create online eL.earning modules, or publish a book that you author.

We are proud to be the preferred training provider at an extensive list of clients that include:

ADAPTEC e AMD e AGILENT TECHNOLOGIES e APPLE e BROADCOM e CADENCE e CRAY e CISCO e DELL e FREESCALE
GENERAL DYNAMICS e HP e IBM e KODAK e LSILOGIC e MOTOROLA e MICROSOFT e NASA e NATIONAL SEMICONDUCTOR
NETAPP e NOKIA e NVIDIA e PLX TECHNOLOGY e QLOGIC e SIEMENS e SUN MICROSYSTEMS SYNOPSYS e TI e UNISYS

4285 SLASH PINE DRIVE COLORADO SPRINGS, CO 80908 USA
M 1.602.617.1123 0 1.800.633.1440 ravi@mindshare.com

4
MINDSHARE

BRINGING LIFE TO KNOWLEDGE

www.mindshare.com

PCI Express
System
Architecture

MINDSHARE, INC.

Ravi Budruk
Don Anderson
Tom Shanley

Technical Edit by Joe Winkles

ADDISON-WESLEY DEVELOPER’S PRESS

Boston ® San Francisco ® New York ¢ Toronto

Montreal ® London ® Munich e Paris ® Madrid ® Sydney
Cape Town e Tokyo ® Singapore ® Mexico City

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designators appear in this book, and Add-
ison-Wesley was aware of the trademark claim, the designations have been printed in
initial capital letters or all capital letters.

The authors and publishers have taken care in preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connec-
tion with or arising out of the use of the information or programs contained herein.

Library of Congress Cataloging-in-Publication Data

ISBN: 0-321-15630-7
Copyright ©2003 by MindShare, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of the publisher.
Printed in the United States of America. Published simultaneously in Canada.

Sponsoring Editor:

Project Manager:

Cover Design:

Set in 10 point Palatino by MindShare, Inc.

123456789-MA-999897
9th Printing, April, 2008

Addison-Wesley books available for bulk purchases by corporations, institutions, and
other organizations. For more information please contact the Corporate, Government,
and Special Sales Department at (800) 238-9682.

Find A-W Developer’s Press on the World-Wide Web at:
http:/ /www.awl.com/devpress/

Contents

About This Book
The MindShare Architecture Seriesccceveeeverereecenene 1
CaUtiONATY NOLE ...ttt se s se e ssssesese s nesenens 2
Intended Audienceueveeereeeveecreecceecrnecrnenns 2
Prerequisite Knowledge 3
Topics and OrganizZation ...t sesessssenes 3
Documentation CONVENTIONScccceeeereeereerreesseesseeesseeessesssseessessssesssessssessssssssssssssssssssssssasssane 4
PCIEXPIESS™ ..ottt 4
Hexadecimal INOTAtION ...c.ccveevieeiereceecete ettt ettt ettt ee ettt ae v evebe et ereenseeseens 4
Binary NOtationccoviiiiiiiiiiii s 4
Decimal NOTAIONccvieveeieeeieiece ettt ettt ettt ettt ettt et e ereeee e e eseebeensebeenseeseenseeseenns 4
Bits Versus Bytes NOtation ... 5
Bt FLELAS ..cuvete ettt ettt ettt ettt et e v ettt e e teeae e ae b e ete et eereebeereseteenteens 5
Active Signal States..........ociiiiiiiiic 5
VISIE QUL WED SIte...ceeieeieceeereeireieetecsereseeseeesseesseessseesssessssesssssssessssessssesssssssssssssssssssssssssassane 5
We Want Your Feedback 6

Part One: The Big Picture

Chapter 1: Architectural Perspective

Introduction To PCI Express 9
The Role of the Original PCI SOIULION.c.ccciueiiiiiiniririiieeree e 10
Don’t Throw Away What is Good! Keep Itcccccoviiriniinniiiiiccciccenne 10

Make Improvements for the FUture. ..o 10
Looking into the FULUTEc.ccccoiiiiiiiiiir e 11
Predecessor Buses Compared 11
AUthOr’s DISCLAIMEToviiiiiiciceiccieccte s 12
Bus Performances and Number of Slots Comparedccccoceeueerrvrcnnnnccnenes 12
PCI Express Aggregate Throughput........c.ccccccecviiiininininirrcc e 13
Performance Per Pin Comparedccccoevieririninnierrenerereeeeeeee s 14

I/O Bus Architecture Perspective 16
33 MHz PCI Bus Based System..........cccociiiiniiiiiininiiiiicciccces 16
Electrical Load Limit of a 33 MHZ PCI BUS.......ccveininiiiniiicccccccccccenes 17

PCI Transaction Model - Programmed IOccccccovniiiiinniiiicnes 19

PCI Transaction Model - Peer-to-Peerccovviuiiiiiniiiiciniiiiciicccnes 22

PCI Bus Arbitrationccocceiiiiiniiiiiiniiiic s 22

PCI Delayed Transaction Protocol ..o 23

PCI Retry Protocol: ..o 23

PCI Disconnect Protocol:ccoccivviiiiiiiiniiiiiniiiincccceecns 24

PCI Interrupt HaNdIING.......ccovveieviiiiiiiiiiiiiicvsn e 25

vii

Contents

PCI Error Handlingc.ccoceviirinnnniicccc e nenes 26
PCI Address SPace Mapccccucueururueieucueirieiieicrieeeeieieeeeeeeeeeeseesee e seeeneeesaees 27
PCI Configuration Cycle Generationccccccccueueucicunrieinunicnnrrrrresessecenes 29
PCI Function Configuration Register Spacecccccccoeeueiiecrnvninnrerrecnes 30
PCI Programming Modelc.cccceeiiiiiniiiicccreeeeeeerere s 31
Limitations of a 33 MHZ PCI SYStem.......c.cccvoiriiiiiiniiiciiccceieeeencneeenenenes 31
Latest Generation of Intel PCI ChipSetscccceeueuviriirninnnirnrreccecceeeaes 32

66 MHz PCI Bus Based System..........cccoeiiiiniiiiininiiiiiiccccces 33
Limitations of 66 MHZ PCIDUScceeieiireieiieirieerteeie e 34
Limitations of PCI Architecture.......ccoevveviiiieiieieiecieccieceeeeeeee ettt 34

66 MHz and 133 MHz PCI-X 1.0 Bus Based Platforms...........ccccoevvvveneecieieerereereennen, 35
PCI-X FEATUIES.....veeeiieiiieieeeieecteeie ettt et et eete et e seveesaeeesbe e saessseesseesssassseesssasnseees 36
PCI-X Requester /Completer Split Transaction Model............cccccevvirininnnne. 37

DDR and QDR PCI-X 2.0 Bus Based Platforms..........cccocueeveeieeeecineeneciee e 39
The PCI Express Way 41
The Link - A Point-to-Point INterconnect............ccooeeevevieeceeciiceeseseeceeseerecee s 41
Differential Signalingcccccccoviiviiiiiiiiiiiiii e 41
Switches Used to Interconnect Multiple Devices............cccocoeueiiiiieiiiccnieicnnen, 42
Packet Based ProtOCOlLccviciieuieiiiieie ettt ettt e a b e ereens 42
Bandwidth and CIocKing.........cccccevuviniiiiiiiiiniiiiiiiiic e 43
AdAIess SPaCE ..o s 43
PCI Express Transactions ... 43
PCI Express Transaction Model.............ccccoeiiiiiiiniiiiiiniiiiinccne 43
Error Handling and Robustness of Data Transfercccccooeveriiiiiiieennen. 44
Quality of Service (QoS), Traffic Classes (TCs) and Virtual Channels (VCs) 44
FLOW CONEIOL...utiitieiieiieeteetete ettt ettt ettt reeteebeeveesbesasesbeessenseensesenns 45
MSI Style Interrupt Handling Similar to PCI-X ..o, 45
Power Management...........ccooviiiiiiiiiiniiiic e 45
HOt PIUZ SUPPOTT ... 46
PCI Compatible Software Model...........ccccooriiiiiiiic e, 46
Mechanical FOrm FactOrS.......ccioiiviiiiiiiiieccieeeeceeteeteetete ettt v e evens 47
PCl-like Peripheral Card and Connectorcccccceueueueirieiiriinnnninccneene 47

Mini PCI Express Form Factor ..o 47
Mechanical Form Factors Pending Release..........ccccoooiniiiiiiincniiceene 47
NEWCARD FOrm FactOrccooiiieiieiie ettt et se e sveesene e 47

Server IO Module (SIOM) Form Factor.........cccoceeeveeirereneineenenereeeeenenns 47

PCI EXPIess TOPOLOZYcccuiuimimiiiiiiiiiiiiiiiiciiciicisicie ettt 48
Enumerating the System.........cccccvviiiiiiiiiiicces 50
PCI Express System Block Diagram..........cccccccuiiiiiiiiiiiiiniiciicnccicceecceeees 51
Low Cost PCI Express Chipsetccccoviiiiieiiiiicieiicceeceeecee s 51
High-End Server System..........ccocovuiveiriiieiiiieieiecc e 53
PCI Express Specifications 54

viii

Contents

Chapter 2: Architecture Overview

Introduction to PCI Express Transactions 55
PCI Express Transaction Protocolcccceviiiiiiinnnnccncccrr e 57
Non-Posted Read Transactions............ccceeeveiiniiiiiinieiiiieccnennne, 58
Non-Posted Read Transaction for Locked Requestsccccccoeviiiiiiiniinninninns 59
Non-Posted Write Transactions.........c.ccccoueiniiiiiiniiincecenes 61
Posted Memory Write Transactions............cccccccvviiiiininiiiiiinniccccnes 62
Posted Message Transactions...........c.coeeeiiniiiiiiniiiiiiciecie e 63
Some Examples of Transactions........c.ccccccueueueururirieienireeineeieenreeseeeeseeeesesesee s 64
Memory Read Originated by CPU, Targeting an Endpoint........c.cccoeevevrunnnnce. 64
Memory Read Originated by Endpoint, Targeting System Memory.................. 66
10 Write Initiated by CPU, Targeting an Endpoint..........ccccccccoevecccccnncnnnne. 67
Memory Write Transaction Originated by CPU and
Targeting an ENdpoint ..., 68
PCI Express Device Layers 69
OVEIVIEW ..ottt 69
Transmit Portion of Device Layers..........cccccociiciiiiieiiiceieeecreeeeeceenes 71
Receive Portion of Device Layers ..o 71
Device Layers and their Associated Packets..........ocoeveiriniinincinncinicicccccceneees 71
Transaction Layer Packets (TLPS)cccccoviiiiininiiiiiiiiiiiiccccccce 71
TLP Packet ASSEMDIY.......cooiuiiiiiiiiiiiiiiiicicceeeee s 72
TLP Packet Disassemblycccciiiiiiiiiiiiiiieeeeeeee s 73
Data Link Layer Packets (DLLPS)cccccoviiiiniiiiiiiiicinicccccccces 74
DLLP ASSEMDIYoovviiiiiiiiiiiii s 75
DLLP DiSassembLYccccoviiveiniiiiiiiiiiiiiiiii s 76
Physical Layer Packets (PLPS)cccccocoviiiviiniiiiiiiccncvccnai 77
Function of Each PCI Express Device Layer ... 78
Device Core / Software Layer ... 78
Transmit Side.oeevieiiiiiii 78
Receive Side......ccouvviiiiiiiiiiiiiii 78
Transaction LayYer ... 79
Transmit Side.coviviiiiiiiiii 80
ReCeiVer SIdeciviviviiiiiiiieiiieiiciccc s 81
FIOW CONEIOL....viiiiiiiiiiciiii e 81
Quality of Service (QO0S)ccovveviviiiiiiiiiiiiiic 82
Traffic Classes (TCs) and Virtual Channels (VCS)......ccocoveneiieiinicnicnencncnine 84
Port Arbitration and VC Arbitration ... 85
Transaction Ordering ...t 87
Power Managementcc.ccceeiiiiiiiiiiii s 87
Configuration RegiSters.........c..couiuiieiiiicieieiiceicc e 87
Data Link Layer ..o 87

ix

Contents

Transmit SIAec.cvvveieiiiiiic e 88
Receive Side......ccovvviiiiiiiiiii e 89
Data Link Layer Contribution to TLPs and DLLPS.........cccccceeuevvuevieicneene. 89
Non-Posted Transaction Showing ACK-NAK Protocol..........c.cccccccvueueununne. 90
Posted Transaction Showing ACK-NAK Protocolc.cccccoeueuevrvvnevcnenenes 92
Other Functions of the Data Link Layer..........cccccccceeeiiinnniinnrnnrenes 92
Physical Layercccccueuiiiiiiiiiicicrriceecere e 93
Transmit SIAeccvviiiiiiii e 93
Receive Side......ccoviiiiiiiiiiiiiii e 93
Link Training and Initializationccccccovvvviiiininnicces 94
Link Power Management ..o 95
RSt s 95
Electrical Physical Layer ..o 96
Example of a Non-Posted Memory Read Transaction......... 96
Memory Read Request Phase............c.coooiioiiiiiii e, 97
Completion with Data Phase ... 99
5 0T 28 i 1 - .101
PCI Express Performance and Data Transfer Efficiency 101
Part Two: Transaction Protocol

Chapter 3: Address Spaces & Transaction Routing
Introduction 106
Receivers Check For Three Types of Link Traffic ..o 107
Multi-port Devices Assume the Routing Burden.............ccccoennnnninane. 107
Endpoints Have Limited Routing Responsibilities............cccccoecueeviniinnrnncncaees 107
System Routing Strategy Is Programmedcccccociocuiieiieicecncceeeeeeenes 108
Two Types of Local Link Traffic 108
Ordered Sets ..o s 108
Data Link Layer Packets (DLLPS).....ccccccciiiiiiiiiiiicccecceeceeree e 111
Transaction Layer Packet Routing Basics 113
TLPs Used to Access Four Address Spaces.........ccccovueueueieienieieieicceneeneeeeeeeeeeenes 113
Split Transaction Protocol Is Used..........ccccucueuriririricininiciniiicircecrreeeceeee s 114
Split Transactions: Better Performance, More Overhead...........cccccccoeueueuvunncnnnne. 114
Write Posting: Sometimes a Completion Isn’t Needed...........cccocevvviiininnnnnnn 115
Three Methods of TLP ROULING.......c.cccvuiieiiieieiniiiineceeerrereceereee s 117
PCI Express Routing Is Compatible with PCIcccccooeiiiiiiiiiiiiieececeeene 117
PCI Express Adds Implicit Routing for Messages.........c.ccccceueueuvueuerererneneecnenes 118
Why Were Messages Added to PCI Express Protocol? ..o 118
How Implicit Routing Helps with Messages...........cccocoeiiiniiiiiniiiinnns 118
Header Fields Define Packet Format and Routingccceevvvernivnrrnnrnncncnnes 119

Contents

Using TLP Header Information: OVerview ..o 120
GeNeTal ...ovvii s 120
Header Type/Format Field ENcodingsccccccceveuiiiiiiiiiencceceecenes 120

Applying Routing Mechanisms......... 121

Address ROULNGccoiiiiiiiiii s 122
Memory and IO Address Maps........ccccciceuiemiiciieiieeeeeeeeeneeenenenenens 122
Key TLP Header Fields in Address ROUtINgc.ccccceueueuiicccicnccicccecne 123

TLPs with 3DW, 32-Bit AddIeSS......ccvveviiieiiiciiieieceeeeeeeeeeeeee et 123
TLPs With 4DW, 64-Bit Addressccccovvvvviiiiinininiiiiicccnnas 124
An Endpoint Checks an Address-Routed TLP..........ccccoooiiiiiiiiiiiiicc 125
A Switch Receives an Address Routed TLP: Two Checks.........ccccoevuiiinnnnnnnn. 125
GENETAL ... 125
Other Notes About Switch Address-Routing.............ccooveiiiiiiinininnnne, 127

ID ROUBINE c..vcviiiitiitetcc sttt 127
ID Bus Number, Device Number, Function Number Limitscccccovveenneeee. 127
Key TLP Header Fields in ID ROUting ..o 128

BDW TLP, ID ROULINGcviiiiiiiciiiiicieiicieiccessie s 128
ADW TLP, ID ROULNG ..ottt 129
An Endpoint Checks an ID-Routed TLP ..o, 130
A Switch Receives an ID-Routed TLP: Two Checks.........cccoeiiviininininiininnee. 130
Other Notes About Switch ID ROUHING........ccccomiiiiiiic e, 130

IMPLicit ROULINE .o s 131
Only Messages May Use Implicit ROUtiNg...........cooeveieiiiiiiiii, 132
Messages May Also Use Address or ID Routingcccceevvveininininiininicncnnne. 132
Routing Sub-Field in Header Indicates Routing Methodcccoooeennnnn. 132
Key TLP Header Fields in Implicit ROUtiNgccccovviiiiiiiiiiiiccce 132
Message Type Field SUMMATYcccoooiiiiiiiiiiiice 133
An Endpoint Checks a TLP Routed Implicitlyccccoevviviviniininnnininiiiiiae, 134
A Switch Receives a TLP Routed Implicitlyccccooeveiiiiiiiiiii 134

Plug-And-Play Configuration of Routing Options 135

Routing Configuration Is PCI-Compatiblecccooiviiiiiiiiiiiiiiiiccceee 135
Two Configuration Space Header Formats: Type O, Type 1cccooevevirnennne. 135
Routing Registers Are Located in Configuration Headerccccccceevinenne 135

Base Address Registers (BARs): Type 0, 1 Headers...........ccooevnvviiininiininniccnnnn 136
GEINETAL ...t 136
BAR Setup Example One: 1MB, Prefetchable Memory Request........................ 138
BAR Setup Example Two: 64-Bit, 64MB Memory Request...........ccccevvrrrurnennn. 140
BAR Setup Example Three: 256-Byte IO Requestcccooevvviiiieiiccnnicieinnne, 142

Base/Limit Registers, Type 1 Header Onlyccccooevviiriiniiiinniiecce e, 144
GINETAL ...ttt 144
Prefetchable Memory Base/Limit Registers.........cccccocouvvvniiiniinniiiiiiiccnnn, 144
Non-Prefetchable Memory Base/Limit Registers.........c.c.cccooovvevviriniiininnnnnes 146

xi

Contents

10 Base/Limit ReGISters........ccccceueuvuiiiiiiiieiiiiiiccccrrrcer s 148
Bus Number Registers, Type 1 Header Only........ccccccoeviivninnnnninnrcececcne 150
Primary Bus NUMDETcccooviiiiiiiii e 151
Secondary Bus NUMDETcccoriiiiiiriiirre s 151
Subordinate Bus NUMDETccccooviviiiiiiiii e, 151
A Switch Is a Two-Level Bridge Structure...........ccooevviiiiniiiniiiiiccnes 151

Chapter 4: Packet-Based Transactions

Introduction to the Packet-Based Protocol...........ccceuevrueveveunnnees 154
Why Use A Packet-Based Transaction Protocol...........ccoveiiiiiniiniiinccicccenee 154
Packet Formats Are Well Definedcccccoviiiviiiiiccc, 154
Framing Symbols Indicate Packet Boundaries...........cccccccccueueucvennnnnnnnnnnes 156
CRC Protects Entire Packetcccoviiiiiiiiiiiiiiicccecec, 156
Transaction Layer Packetseecuecnicecrcnicnciccnicncceincnenes 156
TLPs Are Assembled And Disassembled...........cccovviviiiiniiiiiincicnens 157
Device Core Requests Access to Four Spaces ..o 159
TLP Transaction Variants Defined ..o 160
TLP SEUCUL® . c..evettctttcttctctete e 161
Generic TLP Header FOormatcccocviiiiiniiicccccccccec s 161
Generic Header Field SUmmary ... 162
Header Type/Format Field ENcodingsccccccoviiiiiiniiniiiiiiicnns 165
The Digest and ECRC Field........cccccoeiiiiiiiiiccecnccecceeeeeceeeeeeeeeeeeenns 166
ECRC Generation and Checking ..., 166

Who Can Check ECRC?......oiiiiiiii e, 167

Using Byte Enables ... 167
Byte Enable RUlesccccociiiiiiiiiiiiiiiicns 167
Transaction Descriptor Fields ... 169
Transaction ID ..o 169

Traffic Class ... 169
Transaction Attributesccceeveiiiiiiiii 169
Additional Rules For TLPs With Data Payloads..........ccccoooiiiniiiiiiinnnnnn. 170
Building Transactions: TLP Requests & Completions.........ccccoovviriiiinriricnnnnnnen. 171
JO REQUESES ...ttt s 171

IO Request Header Formatccccoovveviniiiiiiiiiiciiccccccccs 172
Definitions Of IO Request Header Fieldscccooovviviiiniiiinnnnn, 173
Memory REQUESESoooviiieiiiiicct s 174
Description of 3DW And 4DW Memory Request Header Fields............... 176
Memory Request NOeS ...t 179
Configuration ReqUESTScccouvviiiiiiieiccc s 179
Definitions Of Configuration Request Header Fields...........cccccccevuvninnnnnn 181
Configuration Request NOtesc..ccccvvueiiieiiieiiieiiccccc 183
COMPLEIONS......oviviviiiiiciic s 183

xii

Contents

Definitions Of Completion Header Fieldsc.ccccccccciiiniiiinnnnncne. 185
Summary of Completion Status Codes:cccccoeeeiiiiceincccccecne 187
Calculating The Lower Address Field (Byte 11, bits 7:0):.......cccccceceuvuenenee. 187

Using The Byte Count Modified Bit.......c.cccoevviiriiniiincciicccccccenee 188

Data Returned For Read Requests:ccoeuiiiiiiiinniiiiiiiccns 188
Receiver Completion Handling Rules:c.ccccccciiiiiicnnnniininrnene 189
Message ReqUESESccciviiiiiiiiiiic s 190
Definitions Of Message Request Header Fields.........c.ccccccoeiiinnnnnnnnne. 191
Message NOteSs: ... 193

INTx Interrupt Signaling ... 193

Power Management MeSSagescccovueiviriiirininiiiiciinnicccceecccnne 194

EITOr MESSAZES ..ottt 195

UnIOCk MESSAGEc.cuvniniiiiiiiiiiiicicc e 196

Slot Power Limit MeSSagecccccvvuviviiiiiniiiiiiiiiiiiiiiiccccccs 196

Hot Plug Signaling MeSsage ... 197

Data Link Layer Packets 198
TYPES Of DLLPS ...t 199
DLLPS Are LoCal TraffiC...ccuvioiiiceieiei ettt ettt et eeae e 199
Receiver handling of DLLPS.........cccccccciiiiiiiiniiiiininnnns s 199
Sending A Data Link Layer Packet..........cccccccoviiviniiiiniiiiiic 200
Fixed DLLP Packet Size: 8 Bytes.........cccccooiiiiiiiiiiiiiiiiiciiiiicccciccccees 201
DLLP Packet TYPES.....ccoviiiiiiiiiiiiiiciiiciciicicicive e 201
Ack Or Nak DLLP Packet FOrmat.......couovvvieoviiieiireeeeeeeeeeeeeee e 202
Definitions Of Ack Or Nak DLLP Fields......ccccooieviiiiiieeeceieeeeeeeve e 203

Power Management DLLP Packet Format...........ccoooeeiviiiiiiiiinieice, 204
Definitions Of Power Management DLLP Fields...........cccccccovvninnnnnne. 204

Flow Control Packet FOrmatccooouiiviieeiiiiiceeeeeceeeeeceeeeeve e 205
Definitions Of Flow Control DLLP Fieldsc..cocoovieeieiiieeieeeeceeeeeeeene 206
Vendor Specific DLLP Format ... 207
Definitions Of Vendor Specific DLLP Fields.........cccccoovviiiiiniiinnnnnn. 207

Chapter 5: ACK/NAK Protocol

Reliable Transport of TLPs Across Each Link 210
Elements of the ACK/NAK Protocol . 212
Transmitter Elements of the ACK/INAK ProtOCOL........uveeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeenen 213
RePIay BUFLr ..o s 213
NEXT_TRANSMIT _SEQ COUNTET ...cvieviereetiereeeeereereeete et et eee v e ereeneere e 213

LCRC GONETATOTcttieuiieiieetieeeieeete et ettt esteeeteeeteesreeseestaeesseessseesseessseeseesnsesnssensnes 213
REPLAY_NUM COUNL .ottt ettt ettt eete et ereeaseereenseeseersesaeennas 213
REPLAY_TIMER COUNL....ccieviirieieitieteeteeteeteeeteere e eteeeeeeteesse s eseessesseessesseensensens 214
ACKD_SEQ COUNL....ooitiiiiiiiiiieieeeeeeteeiee e et et eeveestveeveesseetaesssaesseesaseasssesssesnses 214

DLLP CRC CRECK ..evivieteeteeeteeeecte ettt ettt esve et eereeveeveeteeveeveeveesseeseessenneensennes 214

xiii

Contents

Receiver Elements of the ACK/INAK ProtoCOL.......ccoveeveeviiieeieeeeeeeeieeeveeee e 216
RECEIVE BULLOT ...ttt ettt ettt et eaeeraeeaeeaen 216
LCRC EITOr CRECK ..voviitieteeieceeeete ettt ettt ettt e eve et ereeeaeerseaneennennas 216
NEXT_RCV_SEQ COUNL ..cuviviiierietieeteereereecteeteeeee et eee e eeveereesseeseessesaseseeseeseensens 216
Sequence Number Check..........ccciiiiiiiiicccceeeeeee e 216
NAK_SCHEDULED FIagcooiiiiiiiiiieiireeee e 217
ACKNAK_LATENCY_TIMERcoeeoviotieteeteeeeeeeeteece ettt ere v eve v ene e 217
ACK/NAK DLLP GENETALOT .ceveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeseeeesseseesesseesenseesnas 217

ACK/NAK DLLP FOIMAL c...eceveeeueereerreerrereessesseessesseessessesssesssessesssessessassssssssssessasssessssssessasnses 219
ACK/NAK Protocol Details........ccceuennee.. 220

Transmitter Protocol Detailscovoeieeiriioiieeiecee ettt e 220
Sequence INUMDETcccoiiiiiiiiiii e 220
B2-Bit LCREC ..ottt ettt ettt ettt et eseenaeene et e eteeteereesasersenneennennes 221
Replay (Retry) Buffer.........ccccoooviiniiiiiiiiiiiiiiiiccccs 221

GONETAL ..ttt ettt et et ettt e teeeareenrs 221
Replay Buffer Sizing..........cccocoviiiiiiiiniiiiiiiiiiiiicccs 221
Transmitter’s Response to an ACK DLLP ... 222
GONETAL ..ottt ettt ettt ettt e teeeareenrs 222
Purging the Replay Buffer..........ccccoovnniiiiniiiccc 222
Examples of Transmitter ACK DLLP Processingcccccoeeveuiiuiuiniiiicncnnnnnen. 222
EXampPle L. 222
EXamMPLe 2. 223
Transmitter’s Response to a NAK DLLP.........cccocooiiiiii 224
TLP RePIaY ...ttt 225
Efficient TLP RePlay ... 225
Example of Transmitter NAK DLLP Processing...........cccooovmeiiuiiiiciincnnnnnn. 225
Repeated Replay of TLPS.......ccccccciuiiiiiiiiiiiiiiiciiiiiciccecses 226
What Happens After the Replay Number Rollover?cccccoviiinnnnne. 227
Transmitter’s Replay Timer..........cccccociiiiiiiiiiiiiiiiicceceeeees 227
REPLAY_TIMER EqUation........ccccocoiiiiniiiiiiiiciiiinicccccec 227
REPLAY_TIMER Summary Tableccccccoviiiniiiiiniinciiiiincicene, 228
Transmitter DLLP Handlingcccccooiiiiiiiiiiiiiiccncccecccnes 229

Receiver Protoco]l DEtailsc.ocviicviioieeiieeieeeeeeee ettt ettt enes v eaeenneas 230
TLP Received at Physical Layer...........cccccocvciiiiiiiiiiiiciniiciccncicecscenes 230
Received TLP Error CReck ...ttt 230
Next Received TLP’s Sequence NUMDeTcccooviieiiiiiiiiiiiceecceee 230
Receiver Schedules AN ACK DLLP....cuoooiiiiieeceeeeeeeeeeeeeeeteeeee e 231
Example of Receiver ACK Schedulingcccceeucuiiiiininiiiiiiiniiiciciccees 232
NAK Scheduled FIag.........ccccooiiiiiiiiiiiiiccccceee s 233
Receiver Schedules @ NAK ...ttt ettt aeas 233
Receiver Sequence Number Check ..o, 234
Receiver Preserves TLP Ordering ... 235

xiv

Contents

Example of Receiver NAK Scheduling.........c.ccccoeiiiiiiiiiieiciiccccccenens 236
Receivers ACKNAK _LATENCY _TIMERoooviivioiiiiiieiieeeeeeeereeeeeeraveeeeeesnnees 237
ACKNAK_LATENCY_TIMER Equation........ccccccccecueueeciecccrceccceenenen 238
ACKNAK_LATENCY_TIMER Summary Table.........c.cccccovvvrrvrrnrcnnne 238

Error Situations Reliably Handled by ACK/NAK Protocol............eeeniiereninnnenennns 239
ACK/NAK Protocol Summary 241
TranSMILEET SIAE ...c.couiriiiiriieieiee ettt ettt aebe e 241
Non-Error Case (ACK DLLP Management)ccccovuiiiiiiiininiiicninnnenne, 241

Error Case (NAK DLLP Management)..........ccccccovviiiininiiiiiniiciicccnnes 242
RECEIVET SIAE....ccuiictiiiiiiiieetet ettt ettt e st e bt eeaesteeraesbaessesaeessenreens 242
NON-EITOT CASE .vviiiiiieiieeiietteete ettt ettt et e e s vt e ve e eaeesveessaessbaesaessseesssesssennses 242

'y (o) G 1= OSSR 243
Recommended Priority To Schedule Packets.........uierevnriririinnincinesnsniniesnsnencscnnes 244
Some More Examples 244
LOSE TPttt ettt ettt ettt st s saet e b e e sses e besasseseesesassessesessesassesassesassesens 244
Lost ACK DLLP or ACK DLLP with CRC EITOT....ccoccteitiieieiiriesieieieeeeeeee e 245
Lost ACK DLLP followed by NAK DLLP.......cccccceoviiiiiiiiiniicninncnnes 246
Switch Cut-Through Mode 248
Without Cut-Through Mode. ... 248
Background..........cciiiiiiiiii s 248
POSSIDIE SOIULION ...ttt ettt et et be e aesbe b e saennens 248

Switch Cut-Through Mode............ccccoiiiiiiiiiii s 249
Background.........ccoiiiiiiiii s 249
Example That Demonstrates Switch Cut-Through Featurecccococe..... 249

Chapter 6: QoS/TCs/VCs and Arbitration

Quality of Service............... 252
Isochronous Transaction SUPPOTt........ccccccuiieiiciiiiicieeecee s 253
Synchronous Versus Isochronous Transactions..........c.ccceeevvviiiieiniiiniiincnnnas 253
Isochronous Transaction Managementc.cccoceveiiiiiiiinnncc, 255
Differentiated SETVICEScccueuiuiuiiiuiiiieiciiiciceieiceiee ettt enenene 255
Perspective on QOS/TC/VC and Arbitration........ceceeincscnncesnesennes .255
Traffic Classes and Virtual Channels .256
VC Assignment and TC Mappingcccccevuviiiiiiiiiiinieeecsnnn, 258
Determining the Number of VCs to be Usedccccocvuvivivininiiiiiinnn, 258
Assigning VC Numbers (IDS) ... 260
Assigning TCs to each VC — TC/VC Mappingcccccceeueueueerenceeneveeneneecnenes 262
Arbitration 263
Virtual Channel Arbitrationcocoveeiiiieniic e 264
Strict Priority VC Arbitration..........cceeveeiieeiiiicccs 265

Low- and High-Priority VC Arbitration...........ccceceoeueerrenrenenrrrseereereenes 267
Hardware Fixed Arbitration Scheme............ccccccooviiiiiininniinniie, 269

XV

Contents

Weighted Round Robin Arbitration Scheme..........c.ccccovvvvinnnnnninnnen. 269

Round Robin Arbitration (Equal or Weighted) for All VCs.......ccccccccuicuennnnne 270
Loading the Virtual Channel Arbitration Table...........ccccccoeoiieiiciccciccnne. 270

VC Arbitration within Multiple Function Endpoints...........cccccevenniiiniinnane. 273
Port ATbItration ..o s 274
The Port Arbitration Mechanisms..........cccccoviiiviiniiniic, 277
Non-Configurable Hardware-Fixed Arbitrationccccccecevevvvnnncnne. 278
Weighted Round Robin Arbitrationc.ccceeveiiiiinccniniccccecenes 279
Time-Based, Weighted Round Robin Arbitrationccccccceevvccinccnnenne 279
Loading the Port Arbitration Tables.........ccccccovviiiiviiinniiiin 280
Switch Arbitration Example ... 282

Chapter 7: Flow Control

Flow Control Conceptcoueeriresrirecriresriressesueseennens 286
FIOW CONIOL BULEIScueeeeeeeietieceieceeeceeceecseeeceecsasesseeesesesssesssessssesssssssessssssssesssssssasssaaens 288
VC Flow Control Buffer Organization...........cccoeevevrnninnnnninrcceccceeeenee 288
FLOW CONITOL CTOditS ...viiuiivieieieieceieeeeceecee ettt ettt ettt et ere vt et reere e reere e e eas 289
Maximum Flow Control BUffer SIZeovevieieieiiieieceeereeeeceeeeeve et 290
Introduction to the Flow Control Mechanism 290
The FIow CONntrol EIEIMENTSccviviiiieereieeereceeeteeteeteeteete ettt eeve e eve e ne e ae v enns 290
Transmitter EIEIMENTSccvocuiiiriirieieeteeeeee ettt ettt et er e e re v eveeaeaeen 291
ReCEIVET ELEIMEONESccvieeeevireetecteeeeeteeee ettt ettt v ere e teeteeere s eneensennes 291

FIOW CONIOL PACKELS ...ccueieeieceeieeieieieieeeseeesaeeeseeecseessseesseessesesssesssessssessssssssssssssssessssssssssssasns 293
Operation of the Flow Control Model - An Example........ccecevrvercrncrennes 294
Stage 1 — Flow Control Following Initialization...........ccocoeeeecccnecinncnneeenes 294
Stage 2 — Flow Control Buffer Fills Up........cccccociioiiiiciiccccceeeeeeeeeeeenes 298
Stage 3 — The Credit Limit count Rolls Over...........ccccocoviiinniiinniiiicne, 299
Stage 4 — FC Buffer Overflow Error Checkc.cocoevvvrninnnnncnrrcceceee 300
Infinite Flow Control Advertisement 301
Who Advertises Infinite Flow Control Credits?.......ccccvevivreeveereeveeeeeeeeeeee e 301
Special Use for Infinite Credit Advertisements.ccocoeeeverrrerenirnrrrrrrecenenes 302
Header and Data Advertisements May Conflict..........ccooevviniiivniiiininnninn, 302
The Minimum Flow Control AdvertiSement............ccceeereeereeenreecreenreeeseeesseeeseeesssessssesaees 303
Flow Control Initialization 304
The FC Initialization SeqUENCe...........ccovveviiiiiiiiiiiiiicc s 305

FC Initl Packets Advertise Flow Control Credits Available............c.ccuveunen.... 305

FC Init2 Packets Confirm Successful FC Initialization.........cccccoevveevvereevveereennenne. 307

Rate of FC_INIT1 and FC_INIT2 TranSmiSSiOnc.ccceeevveevveeveviieeereeeeieeseennes 308
Violations of the Flow Control Initialization Protocolccccceevevevveeveveennnne. 308

Flow Control Updates Following FC_INIT...........cccceueurueunnee. 308
FC_Update DLLP Format and Content............cccvciiiiiininiinniiiniciiccne 309
Flow Control Update FrequUency ... 310

xvi

Contents

Immediate Notification of Credits Allocatedcccccovvnininiiiiiiinnn, 311
Maximum Latency Between Update Flow Control DLLPs.........ccccceicuenneene 311
Calculating Update Frequency Based on Payload Size and Link Width 311
Error Detection Timer — A Pseudo Requirementcccccecueueeunicneicnncnneeenenes 312

Chapter 8: Transaction Ordering

Introduction 316
Producer/Consumer Model............cceuruvuevruennnncne. 317
Native PCI Express Ordering Rules 318
Producer/Consumer Model with Native Devices........oooueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseneennn 318
Relaxed Ordering 319
RO Effects on Memory Writes and MesSages.........cccccocueeueuemiuemeccricmeenenencceenenns 319
RO Effects on Memory Read Transactions............cccccccocueceeuemiemecerccncnceneneeenenenens 320
Summary of Strong Ordering Rules...........c.cccccociiiiiiiiiiiceceeeeeeeeeeenene 321
Modified Ordering Rules Improve Performance 322
Strong Ordering Can Result in Transaction Blockingcccccocoecceccvecnccnnene. 322
The Problem........ccoiiiiiiiiii s 323
The Weakly Ordered SOIULIONc.c.cocveiiieiiiiiiiiicrrrcreeee s 324
Order Management Accomplished with VC Bufferscccccccceeveviivninnnene. 324
Summary of Modified Ordering Rules..........cccccooviiiiniiiiiiic, 325
Support for PCI Buses and Deadlock Avoidance........eveeevceeneereeeneeensenencnene 326
Chapter 9: Interrupts
Two Methods of Interrupt Deliveryiiciciiccciincceinseeessesesssesenens 330
Message Signaled Interrupts 331
The MSI Capability Register Setccoccociiiiiiiiiiiiccrccceeeeeeeeeeeeeaes 332
Capability IDc.cccoiiiiiiiiiiccece s 332
Pointer To Next New Capability ..o 333
Message Control Register ... 333
Message Address Register ... 335
Message Data RegiSteroovivvieiiiiiiiiccc 335
Basics of MST CONfigurationcoeeeeeeeeeririrnirnnrrese e 336
Basics of Generating an MSI Interrupt Requestccocoveveinnnnvnnrnncrene 338
Memory Write Transaction (IMSI) ... 338
MULLIPIE MESSAZES -...evnveereeeeiirie st 339
Memory Synchronization When Interrupt Handler Entered...........ccccovciiinnnnnee. 340
The Problem.........ciiiec s 340
Solving the Problem ... 341
Interrupt LatenCy ...c.covviiiiiiiiiii 341
MSI Results In ECRC EITOTcouiuiiiiiiiiiiiciiciiceresc e 341
Some Rules, Recommendations, €LC.couiiieueiieeeiieeeeieeee e 341

xvii

Contents

Legacy PCI Interrupt Delivery

Background — PCI Interrupt Signalingcccccoeeevcociicccenccnnes
Device INTXH# PINS ...coovoviiiiiiieiccc e,
Determining if a Function Uses INTx# Pinscccccocvceicecnnes
Interrupt ROUtINGccooiviiviiiiiiiiiicns
Associating the INTx# Line to an IRQ Numberc.c.ccccoeueeee
INTX# SIgnalingcccoviviiiiiiiiiiiii s

Interrupt Disable.........ccccoiiiiiiiiiiiiiii
Interrupt Statuscoeviiiiniiiiiiiic

Virtual INTX Signalingccccocevvviiiininniinccs
Virtual INTx Wire Delivery ..o
Collapsing INTx Signals within a Bridge.........ccccooeiiiiiiiinns
INTx Message Format...........ccocoeriiiiiiniiicccc

Devices May Support Both MSI and Legacy Interrupts

Special Consideration for Base System Peripherals

Example SYStemcccciiiiiiiiiiiiiiiicc e

Chapter 10: Error Detection and Handling

Backgroundeeriecrennnnnnn.
Introduction to PCI Express Error Management

PCI Express Error Checking Mechanisms...........c.cccccocvececcueeecennns
Transaction Layer EITors ...,
Data Link Layer Errors ...
Physical Layer EITOrscccoioiiiiiiiieccccecceceeeeeenenenenes

Error Reporting MechaniSms ...

Error Handling MechaniSms...........ccccccueueuemeieieiiecniececceeeneienennes

Sources of PCI Express Errors

ECRC Generation and Checkingccooviiinniiiinniiiiiicns
Data Poisoning (Optional) ...
TC to VC Mapping Errors.......ccccciviviiiinniiiiiiiiccccecens
Link Flow Control-Related EITOrs........cccccocoviviiiininiiiiicccnns
Malformed Transaction Layer Packet (TLP).......cccccccceeeueucniccnnnnnnne
Split Transaction EITOrS ...
Unsupported Request ...,
Completer ADOTt........ccciiiiiiiiiiiiic
Unexpected Completion ...
Completion Time-0Ut ...

Error Classificationsccceeveeeerveeeecvnenene

COrrectable EITOTS ...ooveeeiiceieieeeee et
Uncorrectable Non-Fatal Errors......c.oooevviveeeicieeeeeeeeeeeeeeeeeeeee e
Uncorrectable Fatal EXrOrS.......ooveiieeiieeeeeeeeeeee e

How Errors are Reported

356
356
356
358
358
358
359
360
361
361
362
363
363
364
365
365
366
367
367
368
369
369
369
370

xviii

Contents

EI1or MESSAZEScviviviiiniicitct s
Completion Status.........cccviiiiiiiiiiii

Baseline Error Detection and Handling

PCI-Compatible Error Reporting Mechanismscccccccoceueucunenee.
Configuration Command and Status Registers.........................
PCI Express Baseline Error Handlingc.cccccoeececciccnicnnnne.
Enabling/Disabling Error Reporting..........cccccccoeueucvureereucnenenes
Enabling Error Reporting — Device Control Register

Error Status — Device Status Register ..o

Link EITOTS .c.oiiiiiiciciiicccccee s
Root’s Response to Error Messagec.ccooeueueeieiceicicicnenciennen,

Advanced Error Reporting Mechanisms

ECRC Generation and Checkingcccccceiiiiiiiniiiiniiciicicnen
Handling Sticky Bits........cccccccoiiiiiiiiiiiiiiiicnccc
Advanced Correctable Error Handling ..o,
Advanced Correctable Error Statuscccccoevoiiiiiciinne
Advanced Correctable Error Reportingccccooveecieiinnne.
Advanced Uncorrectable Error Handlingcccooooeiiiiiinne,
Advanced Uncorrectable Error Status...........cccoeeveveicniniinnnne
Selecting the Severity of Each Uncorrectable Error
Uncorrectable Error Reportingocooeeeiiiciiinicccnicnne,
Error LOgEIngcoovvveiiiiiiiiiiiccccccc e
Root Complex Error Tracking and Reportingc.coooevuereieennen,
Root Complex Error Status Registersccccooevrviiinicnnnnne.
Advanced Source ID Registerccccoovoeeiniiicinininiccecne,
Root Error Command Registerccccccvuiviriiviiiiiciniicinnnee,
Reporting Errors to the Host Systemcccccccvuvviiiciniiiiinnnnn.

Summary of Error Logging and Reporting

Part Three: The Physical Layer

Chapter 11: Physical Layer Logic

Physical Layer Overview

DASCIAIMET ...ovviiiiiiiic e
Transmit Logic OVerview ...
Receive Logic OVEIVIEW ...
Physical Layer Link Active State Power Management
Link Training and Initialization..........c.cccocceeeeennenencnrcrreeenes

Transmit Logic Details

TX BULFET ..o
Multiplexer (Mux) and Mux Control Logicccccceeeervnecccrncecane

397
400
400
402
403
403
403
404
404

Xix

Contents

GENETAL ...ttt et et e e et e e bae s abaeae e srae e baeetaenares 404
Definition of Characters and Symbols..........c.ccccccivciiiiiiiicicccccceenens 405
Byte Striping (Optional) ... 408
Packet FOrmat RULESc.voviiiiiiceiieetecee ettt ettt e eve e s 411
General Packet FOrmat RUIES.........c.oooveeieiiiirieiiiececetecee ettt 411

x1 Packet Format Examplecccccoceiuiiiiiiiiiccecceceeeeeeeeennens 412

x4 Packet Format RUIES........ccovieviiiiiciieeie et e 412

x4 Packet Format Examplecccccccociiiiiiiiiiiceceeeeeeeeeeeenenens 412

x8, x12, x16 or x32 Packet Format Rules..........ccccevvvivievvieiiiieeeeece e, 413

x8 Packet Format Example.........ccccccocviiiiiiiiniiiiicccccce, 415
SCIAIMNDIET ...ttt et et e e et e e et e et e eae e eaeeeteeeteeetesenbeeeneeeteenareennens 416
Purpose of Scrambling Outbound Transmission............ccccceueeerieiiiecicieeecnnn. 416
Scrambler AlGOrithim........cccooiiiiiiiiiiiiiii 416
Some Scrambler implementation rules:...........ccccooeiiiiiiii, 417
Disabling Scrambling ..o 418
8b/10b ENCOAING.......cviiiiiiiiiiiiiciicic s 419
GONETAL ..ottt ettt ettt e e e eaeeeeaeeeraeenres 419
Purpose of Encoding a Character Stream..............coooeeieiiiiiniiiieccee, 419
Properties of 10-bit (10b) Symbols...........ccooerieiiiiiiiicecce e, 421
Preparing 8-bit Character Notation.........c.ccooveeioiiiiniiii, 422
DASPATILY ..ttt 423

| D<) 534V 15 Te) o« WSRO 423

Two Categories of 8-bit Characters.............ccccoovvvoiiiiiiic 423

CRD (Current Running Disparity)........cccoeoeiiiiniiiiiniiiiriine 423

8b/10b Encoding Procedure ..o 424
Example ENcoOdings.........cccoouviviiiiiniiininiiiiiniiiiinrincs s 424
Example TransSmiSsion.........cccccveiviiiniiiiiiiniiiiiiiiccnncssssees 425

The Lookup Tables ... 427
Control Character ENCOdingcccccocuiuiiiiiiiiiiiiiiiiiciciccccceccecceeeens 430

(@) 56 1< <o B 1< =SSOSR 433
GOIETAL ..ttt ettt ettt ettt et e reeeareenres 433

TS1 and TS2 Ordered-SetsS........cueuuiieieeceeerieeeieeee et et 434

SKIP Ordered-Set.....c..ccoueieeeieeieeiieeteeeeeeetee e eeeeeee e eeee e e setaeeereeeae e 434
Electrical Idle Ordered-Setcouieuiiiiieoiecieeeeeeeeeeeeeeeeeeee e 434

FTS Ordered-Set......ccuuiieieeeieeeeeeeeeeeteeeee ettt ettt et eaaeenns 434
Parallel-to-Serial Converter (SerialiZer)coeeveereereereririeenierereeneeneereeeseenens 434
Differential TransSmit DITVeT......c..cooiioiieiiiiiiceeeeeeece ettt et enees 435
Transmit (TX) CLOCK ..c.coveviriiririiirieieeeeeee ettt ettt 435
Other Miscellaneous Transmit Logic TOPICScccccovveviivmmimniniinieicceece 436
Logical Idle SEqUENCE........cccueuiiiiiiiiiiiiiciiicc s 436
Inserting Clock Compensation Zones............ccocueucuiuimeiririciiiieeniniiesseseeeeeenes 436
Backgroundcccccvviiiiiiiiiiiii s 436

XX

Contents

SKIP Ordered-Set Insertion Rules...........cccooeeviireininnenneeeeeeeeeene 437
Receive Logic Details 437
Differential RECEIVETcocveuirieririeiirieiireiereeeee ettt seene s 439
RX CLOCK RECOVETY ...ttt 440
GEINETAL ...ttt sttt ettt 440
Achieving Bit LOCKc.ccociiiiiiiiiiccceccececee s 440
Losing Bit LOCK.......coviiiiiiiiiiiii e 441
Regaining Bit LocCK.....c.cccociiiiiiiiiicccccccrc s 441
Serial-to-Parallel converter (DeserialiZer)cccovevievevieieieenecriseeieeee e 441
Symbol Boundary Sensing (Symbol Lock)cccovoviiiiiiiiiic 441
Receiver Clock Compensation LOZICcccoverueieiiiiiiieiiiciccc 442
Background.........cccociiiiiii s 442
The Elastic Buffer’s Role in the Receiver.........ccoceveeeiecieecieciecciecieieeeeee e 442
Lane-t0-Lane DE-SKEWccioiiiiieiieciecieeteteee ettt eve et ae s b be s e raenneas 444
Not a Problem on a Single-Lane LinK.........c.cccooooiiiiiiiiicc 444
Flight Time Varies from Lane-to-Lanecccccocevivinnnnnninni, 444

If Lane Data Is Not Aligned, Byte Unstriping Wouldn't Work 444
TS1/TS2 or FTS Ordered-Sets Used to De-Skew Linkcccceeveeieirinenenienenne. 444
De-Skew During Link Training, Retraining and LOs Exit.........ccccccocevvnnnnne. 445
Lane-to-Lane De-Skew Capability of Receiver............ccoooeviiiiiniicniiiiicicne, 445
8D/ 10D DECOAET ...ttt ettt et ettt et s e e e s enaeesenaeeesneeean 446
GEINETAL ...ttt ettt ettt e re et e e at et e eaeenbeera e benreas 446
Disparity Calculator ..o 446
Code Violation and Disparity Error Detection............cccccoenveiociiiniiiicniiiiicncne. 446
GEINETAL ...ttt et v ettt e et et esreere e be b e reenberaen 446

COde VIOIAtIONS......icveeiiciiete ettt ettt ettt ve e s ae e et baebesreenne e 446
DisSparity EITOIS......ccooiiiiiiiiiiiiiccc e 447
DE-SCIAMDIEToovieiieticieettee ettt ettt ettt eteereebeeaesseeraesssensesssensereens 448
Some De-Scrambler Implementation Rules:ccoooviiiiiiis 448
Disabling De-Scrambling..........cccccccciiuiiiiiiiiiiiiiieieneeseeseeeees 449
Byte Un-Striping........ccccoviiiiiiiiiiiiicicccccc s 449
Filter and Packet Alignment Check............ccocoiiiiiiiiiiicccceee 450
Receive Buffer (RX BUfEr)covereirieiieiieietetre ettt 450
Physical Layer Error Handlingcccoeeueviuineneririninnnenennns 450
Response of Data Link Layer to ‘Receiver Error” Indication...........cccccccvuvueence 451

Chapter 12: Electrical Physical Layer

Electrical Physical Layer Overviewceeueerennnene. 453
High Speed Electrical Signalingccoeeeueueeenniceensineiteeictsicnenicsesensnssesssesesssesnsenes 455
Clock REQUITEIMENLS......cccuuiiiiiicieiicieicieieieieieeee ettt aeeeees 456
GeNeTal ...ovvii e 456

Spread Spectrum Clocking (SSC)cccoviiiviriiiiniiiiicic e 456

xXxi

Contents

Impedance and Terminationcccoceccciiiiiiiicecccceeeee e 456
Transmitter Impedance Requirements.............cccceoeiiiiiiiieccecececeeenens 457
Receiver Impedance Requirements...........cccccccucucucucicnieicieceneeeeeeeeeeeeeenes 457

DC Common Mode VOItaZEScccceuiuruiiiiiiiieiciiciccicecieieeeereeeeeeeeee e 457
Transmitter DC Common Mode Voltage..........cccoovvviiiiiininnniiiccnn, 457
Receiver DC Common Mode Voltage.........cccovviviiiiniiiniiiciciiccnnes 457

ESD and Short Circuit Requirements...........ccccccovvviiiinininiiiiiccccnes 458

ReCEIVET DEtECHIONoiiceeiieciiee ettt e ree et e e e ta e e steeeesareeesnaeas 459
GENETAL ...t ettt et e e a e e e e ab e be e sare e baeeaaeeares 459
With a Receiver Attachedco.oooviioiioiiiiieeecee e e 459
Without a Receiver Attachedooveoviiiieoieiceeeeeeeeceeeee e e 459
Procedure To Detect Presence or Absence of Receiverccceeeeevvereecvecreeneenne. 459

Differential Drivers and RECEIVETScceecveievieeeeeieeereeeee et et eereeeve e eveeeveeaeas 461
Advantages of Differential Signalingcccocoovviviiiiininiiiie, 461
Differential VOItages.........cccccovviviriiiiiiiininiiiiiic s 461
Differential Voltage NOtation............ccccccoeiiiiiiiniiiiiiiiicnc 462

GONETAL ..ottt ettt ettt ae e et e teeeareenres 462
Differential Peak Voltage...........cccccooeiiiiiiininiiiiiiiiiiicins 462
Differential Peak-to-Peak Voltage...........ccccoeceiiiiiiiiiniiiiniiiiiiininnn, 462
Common Mode VOItagecccoiiiiiiiiiiiiicccccccees 462

| 2A (=Tl 'y Tar=1 1B Co | L= TRT USRS 464
Transmitter ReSponsibilitycccccociiiiiiiiiiiniiiie 464
Receiver ReSponsibility ... 465
Power Consumed When Link Is in Electrical Idle Statecccceevvevecveeneennnnne. 465
Electrical IA1e EXAt...ccooovieiiiiieeeeeeee et ettt e eve e e e reeneas 465

Transmission Line Loss 0N LinKccooooiiiiiiiiieieeeeceeeeeeee et 465

AC COUPLNG ..ot 466

De-Emphasis (or Pre-Emphasis)cccccecuiiiiiiiiiiiiiiiiicccecccecccees 466
What is De-EmMpPhasis?cccoiiiiiiiiiiiiiicccces 466
What is the Problem Addressed By De-emphasis?cccccoevieinnriiiiinieinnnes 467
o T0) 1015 (o) s KUUUR USROS 468

Beacon SigNaling ... 469
(@ AT =1 KSR 469
Properties of the Beacon Signalccccccoviiiiiiiiniiiiiiiiicnccccees 469

LVDS Eye Diagram 470

Jitter, Noise, and Signal Attenuation ..o, 470

The EYe TSt ... 470

OptimMal EYe ... s 471

Jitter Widens or Narrows the Eye Sideways.........cccccoovviiiciniiiiceecee, 471

Noise and Signal Attenuation Heighten the Eyeccccoooviiiin 472

Transmitter Driver Characteristics eeterseestessteseeseesaeesaesaeesaeeseeaeesaesaeesaessaeaensan 477

(@31 1<) - 1 F RSSO 477

xxii

Contents

Transmit Driver Compliance Test and Measurement Load..........cccccccoccecuiccnnnnee. 479
Input Receiver Characteristics....iiininnirnisinisinsiininiensessessiesssenes 480
Electrical Physical Layer State in Power States..............cccouueueueuunen. 481

Chapter 13: System Reset

Two Categories of System Reset..............ccucueuuuneee. 487
Fundamental RESEtc.ccueuiiiuiuiiiiiiiiiiicciciecieceee et 488
Methods of Signaling Fundamental Reset ..o, 489
PERST# Type Fundamental Reset Generationcccoeeeveerereecncrncrcncncnes 489
Autonomous Method of Fundamental Reset Generationcc.c........ 489

In-Band Reset or Hot Reset.........cccccoiiiiiiiiiniiiiiiicccs 491
Response to Receiving a Hot Reset Commandcccoveivnciiciniccccicnenes 491
Switches Generate Hot Reset on Their Downstream Portsccocoeeviurnnene. 492
Bridges Forward Hot Reset to the Secondary Bus......ccccccccovuvvvnnnnnncccaees 492

How Does Software Tell a Device (e.g. Switch or Root Complex) to Generate Hot

RESEE? .o e 492
Reset Exit 496
Link Wakeup from L2 Low Power State 497
Device Signals WaKeup..........cccviiiiiiiniiiiiiiiiiniccns 497

Power Management Software Generates Wakeup Event...........cccocvineee. 497

Chapter 14: Link Initialization & Training

Link Initialization and Training Overview crerereeenee s ananes 500
GENETAL ...t 500
Ordered-Sets Used During Link Training and Initialization 504
TS1 and TS2 Ordered-5Setsccocueueurieiiueiciiiiiceiciecceieeeee e 505
Electrical Idle Ordered-Set..........cccooiiiiiiiiiiiiciiiccccceccece e 507
FTS Ordered-Set ... s 507
SKIP Ordered-Setccccoveveiiueiriririieirrrieeeeeereeeeeec et 508
Link Training and Status State Machine (LTSSM)cueueennncriucrnsnnnenennnnns 508
GeNETAL......viiiii s 508
Overview Of LTSSM Statesc.ccccucueuririiiiieieinieeieicreeeieereeeieeeeeneneeeeeeee e eeneeees 511
Detailed Description of LTSSM States............ 513
Detect State.......ooiiiiiiii s 513
Detect.Quiet SUDSTALE........c.ccveeeieieeeeeeeee et 513

Detect. Active SUbStateccoviiiiiiiiiiii 514

POIING Statecoviiiiiic s 515
INtrodUcCtioN ..o 515
Polling. Active SubState..........ccccoeviiiiiiiiiii e 516
Polling.Configuration SubState ..., 517
Polling.Compliance SubState ... 518

xxiii

Contents

Polling.Speed SUbState..........ccccoeiiiiiiiiieicececeeeee s 518
Configuration State...........cocviiriiiiiiccce e 519
GENETAL ...ttt et ettt e e ba e ab e ae e sare e reenraeeares 519
Configuration.RevrCeg SubState ..o 521
Configuration.Idle SUbState............ccccoviiiiiniiiiii 522
Designing Devices with Links that can be Mergedcccccoovviiniiiiinnnnn, 522
GENETAL ...ttt et et e e e ra e e te e abeeares 522
Four-x2 Configuration ... 523
Two-x4 Configuration..........cccocceeviiiinininiiii e 523
Examples That Demonstrate Configuration.RcvrCfg Function.............ccc.cc..... 524
RevrCfg Example T ..o 524
Link Number Negotiation..........cccccoeviiiiiiiniiiiiiini 525

Lane Number Negotiation ..., 526
Confirmation of Link Number and Lane Number Negotiated 526
RevrCfg EXample 2 ...t 527
Link Number Negotiation: ... 527

Lane Number Negotiation ..., 528
Confirmation of Link Number and Lane Number Negotiated 529
RevrCg EXxample 3 ..ot 530
Link Number Negotiation..........cccccceuviiiiiiiiiiiiiiiiiniiiinns 530

Lane Number Negotiationccccccuiiiiiiiiiiiiiiicccccccccces 531
Confirmation of Link Number and Lane Number Negotiated 531
ReCOVETY Statecooviiiiiiiiiicc s 532
Reasons that a Device Enters the Recovery State..........ccoooeiiiiiiiiiiiiinnn, 533
Initiating the Recovery Process..........ccooiiiiiiiiiiiiiccccccceccceens 533
Recovery.RevrLock SubState ..o, 533
Recovery.RevrCeg SubState. ..., 534
Recovery.Idle SubState............cccoiiiiiiiiiiiiiiicc 535

LLO State .o ettt e e et e e e taeeeeaaeeeeanaeenn 537
L0S SHAtO...c ettt ee e et e e e e et e e e taeeeeaaeeeeareeenn 538
L0s Transmitter State Machinec.cooveeiiioiieeeiciceeece e 538
Tx_LOs.Entry SubStatecccccoviviviviiiiiniiiiiiinnicns 538
TX_LOS.IALE SUDSTALE ..ottt eesr e s saneeas 538
TX_LOS. FTS SUDSEALEooeeeieeeeeeee ettt e et eeeae e e sanneas 539

L0s Receiver State Machinec.ooovieeviiieieieecie ettt 540
Rx_LOs.Entry SubState..........cccoouviviviviiiiiiiiiiiinncinnncncs 540
RX_LOS.JALE SUDSLALE ...ttt et neas 540
RX_LOS.FTS SUDSEAtE ...ttt e 540

I S = (TSROSO 541
LIENtry SUDSate.cccoiiiiiiiiiiiiiciccciccceee s 541
L1.IALE SUDSEALE.....cveeeeeteeireieetetecteee ettt ettt ettt e v et e reerae e eanas 542

| I 7= 1 ORI 543

XXiv

Contents

L2.1d1E SUDSEALE......eueevieeeiieeiee ettt 543
L1.TransmitWake SUbStatec.ccceveviiriiinnirinnecereeeee e 543
HOt RESEt STAtE.....cveneiiieiiciiiieieeie ettt s st st 544
DiSADIE STALE...c..eviriiiiieietetetee ettt sttt ettt 545
LoOPDback Statecciviiiiiiiiiic s 547
Loopback.Entry SubState..........cccooovvviiiiiiiiii e, 547
Loopback.Active SubState...........cccovviiiiiiiciiic 548
Loopback.Exit SUbState...........ccoovvviiiiiiiiiiiicc 548
LTSSM Related Configuration Registers..........uereeieenninieeeiirctcininctcenenssennennes 549
Link Capability Register ... 549
Maximum Link Speed[3:0]ccccocoiiiiiiiiiiiis 549
Maximum Link Width[9:4].....c.ccooiriiieie ettt 550
Link Status ReGISterccccoiiiiiiiiiiiiiiiiiiiic s 551
Link Speed[3:0]:....c.ccciiiiiiiiiiiiiiiii s 551
Negotiate Link Width[9:4] ..., 551
Training Error[10] ... 551
Link Training[11] ..o 551
Link Control REGIStETcoiiiiiiiiiiiiiiiiiiciic s 552
LiNK DiSADIE ...cuvicviiiiiieeeeeeceee ettt re e et 552
Retrain LINKcooooiiiiiiieeceeeeeeeeee ettt ettt ne s e 552
Extended SYNch........cccoiiiiiii s 552

Part Four: Power-Related Topics

Chapter 15: Power Budgeting

Introduction to Power Budgetingcueeemncncncenncncncnnnnene. 557
The Power Budgeting Elements....... 558
Slot Power Limit Control........eeeeesennseennnsnsnsnenenennens 562
Expansion Port Delivers Slot Power Limit........cccccoocociciieiiiiiniinccnrceeeeene 562
Expansion Device Limits Power Consumption.........ccceeeeeereeeeerieeeeeeeeeen 564
The Power Budget Capabilities Register Set.............. ... 564

Chapter 16: Power Management

Introduction 568
Primer on Configuration SOftWareeeeiitcteiitcteeitceescsceeeeseseeiseseseanes 569
Basics Of PCIPM ...ttt saeeees 569
OnNow Design Initiative Scheme Defines Overall PMccccccoeieiiiiiiccnene. 571
GOALS .. 572

System PM States........ccveeiiiiiieiiiccccccc s 572

Device PM States.........ccoiviviniiiiiiniiiiiiiiiiic 573
Definition of Device CONtEXt......ccciuiuiuiiimiemimiieiiceeieieereeeeee e nenenens 574

XXV

Contents

General ... 574
PM Event (PME) CONEXLcovuerieiirieieeieeeteie ettt seeee e esesse e sseenne e 575
Device Class-Specific PM Specificationscccoovvvviiniiiniiinniiiine, 576
Default Device Class Specification...........cccooeeeueucreicnincnnrrrrcerreene 576
Device Class-Specific PM Specificationsccccccocoeeviiiviiiciniiniinccnnnnn 576
Power Management Policy OWINETcccvvriiiiniiiiiiiicn, 577
General ... 577
In Windows OS ENVIronment.........c.ccccceucucveeeiemeieninieeeeeneeeeieeeeeeeeeenensenns 577
PCI Express Power Management vs. ACPL........c.cccocooiiiniiiineiicececes 577
PCI Express Bus Driver Accesses PCI Express Configuration and PM Registers.

577
ACPI Driver Controls Non-Standard Embedded Devices..........c.ccccoceviiinnnnnee. 577
Some Example SCeNariosccccceiviiiieiiiiiiiiiiiiiiic s 579
Scenario—OS Wishes To Power Down PCI Express Devices..................... 580
Scenario—Restore All Functions To Powered Up Stateccccocoeeueiaene 582
Scenario—Setup a Function-Specific System WakeUp Event..................... 583
Function Power Management.............coeevenrerinrerneresnesesnenens 585
The PM Capability Register Set ..o 585
Device PM States.......ccoiviiiiiiiiiiiiiiiccicicn e 586
DO State—FuUll On....c.c.oiiiiiiiiiciec et 586
Mandatory. ... 586
DO Uninitialized........c.ceiviririiciiiiciiiccireceteeee e 586
DO ACEIVE ..ot 587
D1 State—Light SIeep......cccceeuiiiiiiiiiiiiiiiiiiiiccc s 587
D2 State—Deep SIEEPcccouiiiiiiiiiiiiiiiicii s 589
DB—FUll Off ..o 590
D3HOt State......c.oieiiieiiiciiccc s 591
D3COLA StAte....cveviiiiciciiecc e 592
Function PM State Transitions.........ccccccveirciniinicnincinceceecieeeeeceeene 593
Detailed Description of PCI-PM Registers ..o 596
PM Capabilities (PMC) RegiSterccccceuimiiiiiiiiiiiciiiicccecceccneeens 597
PM Control/Status (PMCSR) Register ..o 599
Data REGIStETc.cuouiiiiiiiiiiiicicc e 603
Determining Presence of the Data Register............ccccccoeeviiiiiinnninnne. 604
Operation of the Data Registerccccooevviiiiiiiiiiicce 604
Multi-FUNCtion DevViCesc.cccuviiuiiininieiicirieecctnereeeeeere e eenes 604
Virtual PCI-to-PCI Bridge Power Data...........ccccocoveviiiiiicicece 604
Introduction to Link Power Management 606
Link Active State Power Management..........evisiniesisnisisnsnsssnsisissssssssssssssssssssssssssens 608
LL0S SEAtE.....ceeeeiceeceee e 611
Entry into LOSovoveeiiiiiiic e 611
Entry into LOs Triggered by Link Idle Time.........ccccccceeiiiniiniciiiene. 611

xxvi

Contents

Flow Control Credits Must be Delivered............ccccocooviviiiininiiniiininns 612
Transmitter Initiates Entry to LOSccooooiviiiiiiiiiiiicc, 612

Exit from LOS State.........ccooviiviiiiiiiiiiiii e 613
Transmitter Initiates LOS EXit.......ccoooooviiiiiiiiiiie 613
Actions Taken by Switches that Receive LOs EXit......c.ccccccoueuvirirvnnnnncnne. 613

L1 ASPM SEateccuoviiriiiiiicncirctin s 614
Downstream Component Decides to Enter L1 ASPM ..., 615
Negotiation Required to Enter L1 ASPM........cccovviiinnnninrnnncrecccceeee 616
Scenario 1: Both Ports Ready to Enter L1 ASPM State.........ccccoeuvveucvverneneceene. 616
Downstream Component Issues Request to Enter L1 State........................ 616
Upstream Component Requirements to Enter L1 ASPM...........cccccceeeee. 617
Upstream Component Acknowledges Request to Enter L1........................ 617
Downstream Component Detects Acknowledgementccccocoeeeeae 617
Upstream Component Receives Electrical Idle...........cccooiiiiiiiinnnnn. 617
Scenario 2: Upstream Component Transmits TLP Just Prior to Receiving L1 Re-
QUEST ettt 618
TLP Must Be Accepted by Downstream Componentcccceeveeecueuennces 619
Upstream Component Receives Request to Enter L1.........c.cccccooovvniiinnn, 619

Exit from L1 ASPM Statec.ccccoiueiiiiiiiiiciiicciieieiereee e 621

L1 ASPM Exit Signaling.........cccceeuviiieiiiiiiiniiiiiiiiiinieccceees 621

Switch Receives L1 Exit from Downstream Component.............ccccceuenee. 622

Switch Receives L1 Exit from Upstream Componentcccccooevevnirnnnne. 623

ASPM EXit LatenCyc.cvoeviieiiiiiiiiciccc s 624
Reporting a Valid ASPM Exit Latencyccccoeiiiiniiiiiiniiicccccne 625

LOs Exit Latency Update........ccccccooeiiiiiiiiiiiiiiiiiciiiicccncces 625

L1 Exit Latency Updateccccccciiiiiiiiiiiiiiiiiicnicccnnccs 626
Calculating Latency Between Endpoint to Root Complexccccoeveveriennnn. 626
Software Initiated Link Power Management 629
D1/D2/D3Hot and the L1 Stateccovviiiiiiiiieeeeeie et eaee e 629
Entering the L1 Statecccccoooiiiiiiiiiiiiccccccs 630
Exiting the L1 State ... 632
Upstream Component Initiates L1 to LO Transition..........cccccoeviviiiiiinnns 632
Downstream Component Initiates L1 to LO Transitionccccccevveunnencne 633

The L1 EXit PrOtOCOLc.ccviiiiiiiiiicieiiricecnieeeree e 633

L2/L3 Ready — Removing Power from the Link..........ccccccocooiiiininiin 633
L2/L3 Ready Handshake Sequence.............cccccoccuvurininnninnnnninicincccene 634
Exiting the L2/L3 Ready State — Clock and Power Removed...............c.......... 637
The L2 State...cocoveueeireiccieecee ettt 637
The L3 State. oottt 637
Link Wake Protocol and PME Generationeecnccnennen. 638
The PME MESSAGE.......ccvuimimimiiiiiiiiiiiiiiciciiciee e 639
The PME SEqUENCE.cvviiieiriiiiciee et 640

xxvii

Contents

PME Message Back Pressure Deadlock Avoidance..........cccocoevvvinvnncrncncrnncnennes 640
BackgroUund.......c.ccuiiiiiiiiiicc e 641
The ProbIem........ccocoiiiiiiiiicccee e 641
The SOIUION......viiiiiicccc et 641
The PME CONEXL ..o eeaes 642
Waking Non-Communicating Links.......c.ccccccoveeiiiiinniinrcreeesnre e 642
BEACON......ciiiiii 643
WAKEH (AUX POWET) ..evetiiieiieieiieieseteteeeeaesee e eseeseeaesseesseseessesssessesssensesssenns 643
AUXILATY POWET ..ottt s 645
Part Five: Optional Topics

Chapter 17: Hot Plug
Backgroundeeiiecrennnnnnnne. 650
Hot Plug in the PCI Express Environment 651
Surprise Removal Notification........cccccvvviiiiiiiniiiices 652
Differences between PCI and PCI Express Hot Plug...........ccccocoviviiiiiinnininnen 652
Elements Required to Support Hot PIug...........iieeiiceeiiciceeiccneneicsesensnns 655
Software EIEMENtScccoiuiiiiiiiiiiiiicccceee et 655
Hardware EIEMeNtsc.ccciiiiiiiiiiiicccceeceeceec e 656
Card Removal and Insertion Procedures 658
On and Off SAteSccovvveiiieeerrc e 658
Definition of On and Offccccciiiiiiiiiicceeeee e 658
Turning SIot Offcovviiiiiiiiii e 658
Turning SIot On......c.cuiviiiiiiicccc s 659
Card Removal Procedure............cccccciviiiiiinininiiiiiiicccss 659
Attention Button Used to Initiate Hot Plug Removal ..o 659
Hot Plug Removal Request Issued via User Interface..........ccccccevueucvvernenncnne. 660
Card Insertion Procedure...........ccoooiviiiiininiiiiiiiiiicc s 661
Card Insertion Initiated by Pressing Attention Buttonccccevviinninn. 661
Card Insertion Initiated by User Interfacecccooovviviiiinininiiiccnnn, 662
Standardized Usage Model........... 663
Background ... 663
Standard User INEerfaceocovvereverinirirerirrrcrrr s 664
Attention INAicator ... 664
Power INAiCator........c.cuiiiiiiiiiiiiii 665
Manually Operated Retention Latch and Sensor...........ccccevvvvivnininincinnnen. 666
Electromechanical Interlock (optional)........ccccceiiiiiiniiiiniiiiiniccces 667
Software User INterface...........ccovueeveeveeririrriinrreeecr s 667
Attention BUtton ... 667
Slot Numbering Identificationcoccovviiiiniiiie, 668

xxviii

Contents

Standard Hot Plug Controller Signaling Interface 668
The Hot-Plug Controller Programming Interface 670
SIot CaPabIlities.cvuiieeieiieiiciccceiee et 670
Slot Power Limit CONIOL.......cooiuiiiiiiiieieicieieieceeeee e 672

SIot CONIOL.....viiiiittieet s 672
Slot Status and Events Management............cccccccccucuiceieieieeceneeeeee e 674
Card Slot vs Server IO Module Implementations..........c.cccccceueueericncicnneeeeecenenns 676
Detecting Module and Blade Capabilities...........ccoooiiiiiiciccciccecceennen 678

Hot PIUE MESSAZEScciriiiiiiiiiiiiiiiiici s 678
Attention and Power Indicator Control Messagesccccoeeurucuruereiinnnen. 678

Attention Button Pressed Messagecccoooueeiriniiiicicicinicciceccce 679

Limitations of the Hot Plug Messages...........cccccumiiuiiiiiiiiiniiiinnn, 679

SI0t NUMDEIING ...cuirirrririririinininiiensisiisissiistssssisissssssisesesssassess 681
Physical SIot ID......c.coiiiiiiiiiiic s 681
Quiescing Card and Driver 681
GEINETAL ... 681
Pausing a Driver (Optional)cccccceviiiiiiiiiiiiiins 681
Quiescing a Driver That Controls Multiple Devicescccooovviiiiniiicinieiecnne, 682
Quiescing a Failed Card..........cccccoviiiiniiiiiiiiii 682

The Primitives...iiiiiiiiiiiiiiniisissniissoss 682

Chapter 18: Add-in Cards and Connectors

Introduction 686
Add-IN CONNECLOT ...t 686
AUXIHATY SIGNQAIS ... 693

GeneTal ... 693
Reference CLOCK.c.ccuiuimimiiiiicicieiceccee ettt 694
PERSTH ...ttt 695
WAKEH ..o 696
SIMBUS ...ttt 698
JTAG .ot 699
PRSINT PINS...oiiiiiiiiiieieiiieiceeceeictete ettt e eeees 699
Electrical REQUITEMENLS..........ocoviuiuiiiiiiiiiiicccccccceccte e 700
Power Supply ReqUirementscccoeeiiiiiiinininiiiciccenees 700
Power Dissipation LImits ..o 701
Add-in Card Interoperabilityccccciiiiiiiiiiiceecceceeeeeeee s 702

Form Factors Under Development...........oevivenivnisnncsnncsnnscsennenes 703
GeNeTAl. ... 703
Server IO Module (SIOM).......cocieieriieiieieeierietesteestee e e eete st aeseessesse e e sssessesssensens 703
RiSer Card.......cooiiiiiiiiiii s 704
Mini PCI EXPress Card ... s 704
NEWCARD fOrm factorccoveueevieiriririnieieeririerecreree e saeeees 707

XX1X

Contents

Part Six: PCI Express Configuration

Chapter 19: Configuration Overview

Definition of Device and FUNCHON ...ttt ssesessnene 712
Definition of Primary and Secondary Bus........................ 714
Topology Is UnKnown At Startupecceieeeenicecieeicnteeisccennsescessnesesssseseseas 714
Each Function Implements a Set of Configuration
Registers ...715
INErOAUCHON ..ottt s 715
Function Configuration Space.............ccocoviiiiiiiiiiiiniiic s 715
PCI-Compatible SPaceccoovvviiiiiiiiiiiiiii e 715
PCI Express Extended Configuration Space..........cccccccceeicueceenccnnceeeenenns 716
Host/PCI Bridge’s Configuration Registers............ccoeeueueucueunne. 716
Configuration Transactions Are Originated by the
ProcesSor ...ttt 718
Only the Root Complex Can Originate Configuration Transactions....................... 718
Configuration Transactions Only Move DownStream...........ccccccceveevirirvneeennnencnes 718
No Peer-to-Peer Configuration Transactions............ccceeeereeeeriinercceniinneceeceenen. 718
Configuration Transactions Are Routed Via Bus, Device, and Function Number... 718
How a Function Is DiSCOVered.......evereerereeneeneeeeeeeeeenenesseseesesessesessesessesssssns 719
How To Differentiate a PCI-to-PCI Bridge From a Non-Bridge Function.................. 719

Chapter 20: Configuration Mechanisms

Introduction 722

PCI-Compatible Configuration Mechanism...........iceemieneiccnnsrcceniinesceenenenens 723

BackGroUndc.cciuiiiiiiiiiiicccc e 724
PCI-Compatible Configuration Mechanism

DeSCIIPHION ..ottt 724

GeNeTal ...oviii s 724

Configuration Address POrt ..o, 725

Bus Compare and Data Port Usage.........cccooeuviiiniiiiiniiniiiiiicccnes 726

Target Bus = 0....cooiviiiiiiii s 726

Bus Number < Target Bus < Subordinate Bus Number..............ccccccceueeeee. 727

Single Host/PCI Bridgec.coveuvururuierieirieicirirrcieeeecreeeeeeeeseeeeeeee s 727

Multiple HOst/PCI Bridgescccovirireiiiiieciciiccciccniccceeeece s 729

PCI Express Enhanced Configuration Mechanism 731

DeSCIIPHION ..ottt 731

SOME RULES ... 731

Type 0 Configuration Request ... 732

Type 1 Configuration Request ... 733

XXX

Contents

Example PCI-Compatible Configuration Access 735
Example Enhanced Configuration ACCeSs........ierreereseiierensnsnesiesninesecsnenesenes 736
Initial Configuration ACCESSEScumvreieriniireiiintcteintceiese s sssesesssesssesesnes 738
What's Going On During Initialization Time?ccccccoevrrnnnnnnrreccceeee 738
Definition of Initialization Period In PCIccccooovviiinniiiiiiccces 738
Definition of Initialization Period In PCI-Xccccooeiiiinniiniiiicce, 739
PCI Express and Initialization Time..........cocoeoiiiiniiiiiieeicccececeeeeeeeneeeees 739
Initial Configuration Access Failure Timeout ... 739

Delay Prior To Initial Configuration Access to Devicecccococcecueucrnuencnnne. 739

A Device With a Lengthy Self-Initialization Periodccccceovviiniininnnne. 740

RC Response To CRS Receipt During Run-Time ..., 740

Chapter 21: PCI Express Enumeration

Introduction 741

Enumerating a System With a Single Root Complex.................. 742

Enumerating a System With Multiple Root Complexes 753
Operational Characteristics of the PCI-Compatible Mechanism............ccccocevevueuenen 754
Operational Characteristics of the Enhanced

Configuration MechaniSm ..o 755
The Enumeration ProCeSSccccicuiiiieieiiiiiiiiceecieee et neeees 755

A Multifunction Device Within a Root Complex or a Switch 758
A Multifunction Device Within a Root CompleX..........ccoovvviiiniviniiiiiicnicninnen, 758
A Multifunction Device Within a Switch ... 759

An Endpoint Embedded in a Switch or Root Complex... 761

Memorize YOUT IAENtity ...ttt ssseaeseanes 763
GeNETAL. ..o 763
Root Complex Bus Number /Device Number

ASSIGNIMENL ..o s 764
Initiating Requests Prior To ID Assignment...........ccccccovviiiiiiniiiciiniicnes 764
Initiating Completions Prior to ID Assignmentcccoeeveeeiiiiiieninnn 765

Root Complex Register Blocks (RCRBs) ... 765
What Problem Does an RCRB Address?ccccociiviiiiiiininiiincces 765
Additional Information on RCRBScccccoiiiiiiiiiiiiiies 766

Miscellaneous RULeS.......uiiiiecciicectcittcettcsce et essese s ssese s ssssseseanes 766
A Split Configuration Transaction Requires a Single

COMPLEION.....cviiiriiit s 766
An Issue For PCI Express-to-PCI or -PCI-X Bridges.........cccccocvvuriiiiniiieriiiirennnnn, 767
PCI Special Cycle Transactions...........ccveueveviuiieieieieieirnieeeceeeees s 767

XXX1

Contents

Chapter 22: PCI Compatible Configuration Registers

Header TYPE 0.ttt sesssssssssssssesesssssesssssssene 770
GeNETAL....oviiiiii s 770
Header Type 0 Registers Compatible With PCI.........ccccocoeviiinnnninrrirrene 772
Header Type 0 Registers Incompatible With PCIcccoeiiiinnnnneee. 772
Registers Used to Identify Device’s DIiver ... 773

Vendor ID ReGISLETcciiiiiiiiiicciceeceeee e 773
Device ID RegISterccoiviiiiiiiiiiiiiiiiiic s 773
Revision ID ReGISteTc.coviiiiiiiiiiiiiiiiciiiic s 773
Class Code REGISTETc.ccvuruiiririeirieiceiceeeeere s 774
General ..o s 774

The Programming Interface Byte ... 774
Detailed Class Code Description..........cccvuvuiiiiieiiiiiiiniiecccciicnnas 775
Subsystem Vendor ID and Subsystem ID Registers...........ccccovuviiininniiininnns 776
General ..o s 776

The Problem Solved by This Register Pair..........ccccoceeeruvuenvnnrnnnreccaes 776

Must Contain Valid Data When First Accessed..........ccccoveiiiiiiiinininiinnnnn 777

Header Type Register ..o 777
BIST REGIStET ..ottt s 778
Capabilities Pointer Register ... 779
Configuration Header Space Not Large Enough.........ccccccovvviniiniiinnnnn, 779
Discovering That Capabilities EXistccccooeiiiiiiiiniiiccce, 779
What the Capabilities List LOOkS LiKecccccoceveiiiiiiiiiiiiiiiice, 780
CardBus CIS Pointer Register ... 782
Expansion ROM Base Address Register...........ccccoeviiiiiiiiiiiiiiiiicccc 783
Command Registercciiiiiiiiiiiiic s 785
Status ReGIStETccvviviiiiiiiiciicc s 788
Cache Line Size RegIStercccoviieiiiiiiiiiiiiiciciccccc s 790
Master Latency Timer Register ..o 790
Interrupt Line ReGiSter........covoviiiiiic 791
Usage In a PCI FUNCHONcooovviiiiiiii s 791
Usage In a PCI Express FUNCHON..........cccoiiiiiiic 791
Interrupt Pin ReZISteroovivivieiiiiiiiiiiiii 792
Usage In a PCIFUNCHON ..o 792
Usage In a PCI Express FUNCHON..........cccoiiiiiiii 792
Base Address RegiStersooeiuiiiiiiiiiieiiii 792
INtrOdUCHON ..ot 793

IO SPace USAZE.......ccueiiieieriiiicicic it 793
Memory Base Address Register............ccocueueiiiriiiiiiiiciciccc 794
Decoder Width Field ..o 794
Prefetchable Attribute Bit ... 795

xxxii

Contents

Base Address FIeldcoooioiiiiiiiiieeeieeeeeeeeeete ettt 796
IO Base Address RegIStercccccveuiuiiciciiiiiiiicccccceeeeceeeeeee s 797
INEFOAUCHON . .c..eceeeeiieeee et et re e ere e e be e aaesaras 797
IO BAR DeSCription......c.cccviiiiiiiiiiiniiiiiiiiciicnc s 797
PC-Compatible IO Decoder ...t 797
Legacy IO DecOders ..o 798
Finding Block Size and Assigning Address Range...........cccccoccvevvevnvnnncncne. 799
HOW TE WOTKS ottt et ettt et ears 799
A Memory Example ... 799
AN JO EXaMPLe....uuiiiiiiiiiiiii e 800
Smallest/Largest Decoder Sizes ..., 800
Smallest/Largest Memory Decoders...........ccoouoimuiiniiiicininiccieccieie 800
Smallest/Largest IO Decoders...........ccccviiiiniiiininiiiiiiiiiiis 800
Byte Merging ..o 801
Bridge Must Discard Unconsumed Prefetched Datacccoeveiiiiiiiinnnne. 801
Min_Gnt/Max_Lat Registers ... 802
Header TYPE T...euerrriririensriniinssisisiissssisisissssisisissssssssisssssssssseessssssssssssssssssssssens 802
GONETAL. ...ttt ettt et et e et e e et eete e tr et eete e et e e teenareenneas 802
Header Type 1 Registers Compatible With PCI..........ccccooovoiiiiiiii 803
Header Type 1 Registers Incompatible With PCIc.c.cocoooiiiiiin, 804
TerminOlOZYc.ceuiiiiiiiiiiiiiiiiiic s 805
Bus Number RegISters..........cciuiiiiiiiiiiiiiiiiiccccs s 805
TNELOAUCHON vttt e e et e b e aaeeereeeaaeereenneas 805
Primary Bus Number Register............ccccccoviiiiiiiiniiiiiinicccn 806
Secondary Bus Number Register..........cccocoouiiiiiiiiiiccccc e, 806
Subordinate Bus Number Register..............coocooiiiiiiniiiic, 807
Bridge Routes ID Addressed Packets Using Bus Number
REGISLOTS.vcvieiiiiiciiitcct e 807
Vendor ID ReGiSter ... e 808
Device ID RegISterccoviiiiiiiiiiiiiciiccc s 808
Revision ID RegiStercovuiiiiiiiiiiiiicicicn s 808
Class Code REGISTETcciiuiiiiiiiiiiiiiiici s 808
Header Type ReGister ..o 808
BIST ReGIStETcooiiiiiiiiiiicccc s 809
Capabilities Pointer RegiSter ..o 809
Basic Transaction Filtering MechaniSm ... 809
Bridge’s Memory, Register Set and Device ROMccccccceeuiiiiiiiiiniinniiine 810
| 510 4 Yo L6 Tei s (o) 4 WU 810
Base Address REGISLETSccvuviviiiiiiiriiiiiiiiiicicc s 811
Expansion ROM Base Address Register............cccoovuviimimeieiiiinieiecceeiceee, 811
Bridge’s IO FIIEETocooiiiiiiiiiiiccc s 811
| 5L a4 Yo L6 Ted s (o) 4 NN 811

xxxiii

Contents

Bridge Doesn’t Support Any 1O Space Behind Bridge.........ccccoccvuecvvinncenne. 812
Bridge Supports 64KB IO Space Behind Bridge........cccccccceueueicvinicvniicnes 813
Bridge Supports 4GB IO Space Behind Bridge.........cccccovveevirevvnrncnicne 817
Bridge’s Prefetchable Memory Filter ... 819
An Important Note From the AUthors ... 819

IN PCLu s 820

IN PCIEXPIESS ...t 821

Spec References To Prefetchable MemOrycccccoeevvvvvnnirnrnnrnene 822
Characteristics of Prefetchable Memory Devices..........cccccceioieicmiioccccccnennn 823
Multiple Reads Yield the Same Dataccccoooiiriiiiiicii 823

Byte Merging Permitted In the Posted Write Buffercccccccovinnnnn 823
Characteristics of Memory-Mapped IO Devices..........cccocoeueiniiriniicciciniicnne, 823
Read CharacteristiCscoovueciririiiciiiicicicieccce e 824

Write CharacteristiCsooovuiiiiiciiiiiicccc s 824
Determining If Memory Is Prefetchable or Not ..o, 824
Bridge Support For Downstream Prefetchable Memory Is Optional 825
Must Support > 4GB Prefetchable Memory On Secondary Side........................ 825
Rules for Bridge Prefetchable Memory Accesses...........oooveieiiiicieieicicneieinnnnes 829
Bridge’s Memory-Mapped IO Filter.........ccocooiiiiiniiniiiiiiiicccccccccces 830
Bridge Command Registers............cccccoviiiiiiiiniiiiiiiiiiincccs 832
INErOAUCHON ..o 832
Bridge Command Registerccccccceiiiiiiiiiiiiicncces 832
Bridge Control ReGIStercccciiiiiiiiiiiiiiiiiciiccces 835
Bridge Status Registers...........ccccciiiiiiiiiiiiiiicccce s 837
INErOAUCHION ...t 837
Bridge Status Register (Primary Bus).........ccccceeviviiiiviinnnniiinccnce 837
Bridge Secondary Status Registerc.ocooveiiiiiiiiiiiiceea, 840
Bridge Cache Line Size ReISterccccciiiiiiiiiiiiiiiiiiiiicicccccccs 843
Bridge Latency Timer Registers..........cccoviviiiniiiiiiiniiiniiiiicccccccee 843
Bridge Latency Timer Register (Primary Bus).........ccceoeiiiiiiiiiinciicnn 843
Bridge Secondary Latency Timer Register ..o, 843
Bridge Interrupt-Related Registers..........ccccoceiuiiiiiiiiiniiiiiiniiiiinnicnnrcccecs 844
Interrupt Line Register ... 844
Interrupt Pin Register.........ccoiiiiiiiiiiiice 844
PCI-Compatible Capabilities........cccoceueurrcccrueurncncs 845
AGP Capabilityccccoviiiiiiiiiiiciii e 845
AGP Status Register ... 845
AGP Command Registerc.coiiiiiiiiiiiiicccccceceeeeees 846
Vital Product Data (VPD) Capabilitycccccoeeiiiiiiiniiiieicciecccece e, 848
INErOAUCHION ...ttt 848

It's Not Really Vital ..o 849
WHRhat Is VPD? ... 849

XXXiv

Contents

Where Is the VPD Really Stored?ccovviiininniiciiiccccccccecceeenens 849
VPD On Cards vs. Embedded PCI Devices...........ccocoveriviiiniiiniinininicricnnes 849
How Is VPD ACCESSEA?cooviiiiiiiiicicicc e 849
Reading VPD Data.......ccccooiiiiiiiiiiiiiiiiiiicinens 850
Writing VPD Data........cooveiiiiiiciic 850
Rules That Apply To Both Read and Writescccccovviiiniiiiinnnnnns 850
VPD Data Structure Made Up of Descriptors and Keywordsc.ccccvuneene 851
VPD Read-Only Descriptor (VPD-R) and Keywords..........cccocovviiiiiiniiinnnnnes 853
Is Read-Only Checksum Keyword Mandatory? ..o, 855
VPD Read/Write Descriptor (VPD-W) and Keywordsccccooeieiiiinicnnnnn 856
Example VPD LiSt.....ccccciiiiiiiiicicic s 857
Introduction To Chassis/Slot Numbering Registers...........cccooovoeieniiiiiiiiccine. 859
Chassis and Slot Number Assignmentcoccceeieiiiimicieiniiiicie e 861
Problem: Adding/Removing Bridge Causes Buses to Be Renumbered........... 861
If Buses Added/Removed, Slot Labels Must Remain Correct........coevveeeuveennes 861
Definition of @ Chassisccocoiciiiiriiiciricccee e 862
Chassis/Slot Numbering Registers............ccocoeeiiiirieiiicicciiicceecc e, 863
PCI-Compatible Chassis/Slot Numbering Register Setc..cccceeueence. 863
Express-Specific Slot-Related Registers............cccocoeueiiiiiniiiiiiiciinicceeae, 863
TWO EXaMPIES ... 866
First EXample.......c.coooiiiiiiiiiiicc s 866
Second Example.........ccccovviiiiiiiiiiiiniiiis 867

Chapter 23: Expansion ROMs

ROM Purpose—Device Can Be Used In Boot Process .872
ROM Detection 872
ROM Shadowing Requiredceeeeeniinerensnnncrincnsnnncncnenns 875
ROM Content 875
Multiple Code IMAagesoovrviiiiirimiiiiiiii s 875
Format of a Code IMage.......cccevuriirirrinicecccrre s 878
L3 =3 =Y USRS 878

ROM Header FOImMat........cccieiriirerierieieieieieteteeee st eresse v ssessessesaessesasssssesssssenns 879

ROM Data Structure FOrmatcccoecvveiereerciineeierierieeeeieeeeeseee e 881

ROM SigNaturecooueiiiiiiiiiiiiicc s 883

Vendor ID field in ROM data Structureccoeveeeveeeieeninieereiesveseieenns 883

Device ID in ROM data StrUCHUTE..........ccoeveeeriiieieieieeeeeeeieere et esaeveeens 883

Pointer to Vital Product Data (VPD).....cccceeieieiieiieiiecieieecree st 884

PCI Data Structure Lengthccccoviviiiininiiiiiiiiiiice 884

PCI Data Structure REVISIONcceecvereerierieierieienteevesieeieseeeesesssessesssasenns 884

ClaSS COAE ..uiniirieiicieeeeeete et ettt ettt e st e e s e e b e sseesaes s esseessenseessesesnnenns 884

Image Length........ccccooiiiiiiiiiiiiii s 884

Revision Level of Code/Dataccuouviiviiiieeciiciiieeeeee e 885

XXXV

Contents

COAE TYPE...eiiiiciiiccecce e 885

INAICAtOT BYE ...ttt 885

Execution of Initialization Code ..., 885

Introduction to Open Firmware 888

INErOdUCHON ..o 888

Universal Device Driver Format..........cccccooviiiiiiiiiiiiins 889

Passing Resource List To Plug-and-Play OS.........ccccccccciiiniiiiininicrrceeeeenes 890

BIOS Calls Bus Enumerators For Different Bus Environments 890

BIOS Selects Boot Devices and Finds Drivers For Themcccccccceovuvinnnencne. 891

BIOS Boots Plug-and-Play OS and Passes Pointer To Itcccccoiiiiinnnn. 891

OS Locates and Loads Drivers and Calls Init Code In Each...........ccccccccevevenne 891
Chapter 24: Express-Specific Configuration Registers

Introduction 894

PCI Express Capability Register Set........iceiceiniitceiiicneeinctceescsesensesesnseenes 896

INErOdUCHON ..o 896

Required REGISTETSc.cciuiuiiiiiiiiiiiicicccciee e 897

GeneTal ..o 897

PCI Express Capability ID Registercocoevvvrnniiniiicciiccecceeeeneecenes 898

Next Capability Pointer Register..........cccccceviiririniirrrrrrreeerc e 898

PCI Express Capabilities REGIStET ... 898

Device Capabilities ReZISter.........ccccoceuiiiuiiiieiiiiircrccrreee e 900

Device Control REGISteTcccvuiviiiiiiiiiiciic e 905

Device Status Register ... 909

Link Registers (REGUITE)cccceueueuiuimiuiiemicmiiiieiceeeieieerereeee e nenenens 912

Link Capabilities REZISTETccccceiuiuiuiiiiiiiiriricicrcererere s 912

Link Control Register ... 915

Link Status Register..........cccoovviiiiniiiiiiiiiiiiici 918

SOt REGISTETS.....uiuiiiiiiiiiicciicc s 920

INtrodUCtioN ... 920

Slot Capabilities Register ... 920

Slot Control ReGIStercccevieieiiiiiiiiiiicierciccee s 923

Slot Status RegIStercovviiiiiiiiiiieiiiiccecicec e 925

ROt POTt REGISLETS ...t 926

INtrodUCHON ... 926

Root Control ReGISter.........cccooviveviiiiiiiiiiiiicicccccc s 926

Root Status Register...........ccovviiiiiiiniiiiiiic s 928

PCI Express Extended Capabilitiescvenirnisenisnisnnisnnississsscsessesesscsesaenes 929

GENETAL....oiiiii s 929

Advanced Error Reporting Capability.........cccccoeeiiiiiiiiiiecce, 930

GeNeTal ... 930

Detailed DesCription.........ccccuiieuiiiiiiiiiiiiiiiieiiiceec s 930

XXXvi

Contents

Virtual Channel Capability..........cccooooiiiiiiiiiiii 939

The VC Register Set’s PUIPOSE.........cooeueiiiiieieiicciec 939

Who Must Implement This Register Set?..........ccoooooiiiiiiiic 940

Multifunction Upstream Port Restriction..........cccccovveiiiininnininni 940

The Register Set.......ooiiiriiic 940

Detailed Description of VCs........ccccooiiiiiiiiiiiniiiiiciicccics 940

Port VC Capability Register 1.........c.cocooriieiiiiiiiiciee e 941

Port VC Capability Register 2...........cccoorueieiiiiieiiiiece e 943

Port VC Control ReGISter ..o 944

Port VC Status Register...........coooiuiiiiciiiiiic e, 945

VC Resource ReGISters ..ottt 946

General ..o 946

VC Resource Capability Registercooceuoiiiieiiiiciiice 946

VC Resource Control Register ... 948

VC Resource Status Register ..o 950

VC Arbitration Table.........cccccccoviiiiiiiiiii 951

Port Arbitration Tables ... 952

Device Serial Number Capabilitycccooiiiiiiiiiii e 952

Power Budgeting Capabilityc.ccooriiiiiiii e 954

Generalc.covviiiiiiii 954

HOW It WOTKS ..o 955

RCRB 957

General......coiiiiiiiiii s 957

Firmware Gives OS Base Address of Each RCRBcccccccoviiiiiiiiiiiiiiin 957

Misaligned or Locked Accesses To an RCRB..........cccooiiiiiiiiiie 957

Extended Capabilities in an RCRBc.cccooiiiie 957

The RCRB MisSing LinkKcoooiiiiiiiiiiieiiceecci s 958

Appendices

Appendix A: Test, Debug and Verification of PCI Express™ Designsccceceueunee 961

Appendix B: Markets & Applications for the PCI Express™ Architecture................ 989
Appendix C: Implementing Intelligent Adapters and Multi-Host Systems With

PCI EXpress™ TeChNOLOZYcccevueururisisusssusssusssass 999

Appendix D: Class Codes 1019

Appendix E: Locked Transactions Seriesnenissisissensnsessssesensnens 1033

53T - U 1043

Xxxvii

1 Architectural
Perspective

This Chapter

This chapter describes performance advantages and key features of the PCI
Express (PCI-XP) Link. To highlight these advantages, this chapter describes
performance characteristics and features of predecessor buses such as PCI and
PCI-X buses with the goal of discussing the evolution of PCI Express from these
predecessor buses. The reader will be able to compare and contrast features and
performance points of PCI, PCI-X and PCI Express buses. The key features of a
PCI Express system are described. In addition, the chapter describes some
examples of PCI Express system topologies.

The Next Chapter

The next chapter describes in further detail the features of the PCI Express bus.
It describes the layered architecture of a device design while providing a brief
functional description of each layer. The chapter provides an overview of
packet formation at a transmitter device, the transmission and reception of the
packet over the PCI Express Link and packet decode at a receiver device.

Introduction To PCI Express

PCI Express is the third generation high performance I/O bus used to intercon-
nect peripheral devices in applications such as computing and communication
platforms. The first generation buses include the ISA, EISA, VESA, and Micro
Channel buses, while the second generation buses include PCI, AGP, and PCI-X.
PCI Express is an all encompassing I/O device interconnect bus that has appli-
cations in the mobile, desktop, workstation, server, embedded computing and
communication platforms.

PCI Express System Architecture

The Role of the Original PCI Solution

Don’t Throw Away What is Good! Keep It

The PCI Express architects have carried forward the most beneficial features
from previous generation bus architectures and have also taken advantages of
new developments in computer architecture.

For example, PCI Express employs the same usage model and load-store com-
munication model as PCI and PCI-X. PCI Express supports familiar transactions
such as memory read/write, IO read /write and configuration read /write trans-
actions. The memory, 10 and configuration address space model is the same as
PCI and PCI-X address spaces. By maintaining the address space model, exist-
ing OSs and driver software will run in a PCI Express system without any mod-
ifications. In other words, PCI Express is software backwards compatible with
PCI and PCI-X systems. In fact, a PCI Express system will boot an existing OS
with no changes to current drivers and application programs. Even PCI/ACPI
power management software will still run.

Like predecessor buses, PCI Express supports chip-to-chip interconnect and
board-to-board interconnect via cards and connectors. The connector and card
structure are similar to PCI and PCI-X connectors and cards. A PCI Express
motherboard will have a similar form factor to existing FR4 ATX motherboards
which is encased in the familiar PC package.

Make Improvements for the Future

To improve bus performance, reduce overall system cost and take advantage of
new developments in computer design, the PCI Express architecture had to be
significantly re-designed from its predecessor buses. PCI and PCI-X buses are
multi-drop parallel interconnect buses in which many devices share one bus.

PCI Express on the other hand implements a serial, point-to-point type inter-
connect for communication between two devices. Multiple PCI Express devices
are interconnected via the use of switches which means one can practically con-
nect a large number of devices together in a system. A point-to-point intercon-
nect implies limited electrical load on the link allowing transmission and
reception frequencies to scale to much higher numbers. Currently PCI Express
transmission and reception data rate is 2.5 Gbits/sec. A serial interconnect
between two devices results in fewer pins per device package which reduces
PCI Express chip and board design cost and reduces board design complexity.
PCI Express performance is also highly scalable. This is achieved by implement-

10

Chapter 1: Architectural Perspective

ing scalable numbers for pins and signal Lanes per interconnect based on com-
munication performance requirements for that interconnect.

PCI Express implements switch-based technology to interconnect a large num-
ber of devices. Communication over the serial interconnect is accomplished
using a packet-based communication protocol. Quality Of Service (QoS) fea-
tures provide differentiated transmission performance for different applica-
tions. Hot Plug/Hot Swap support enables “always-on” systems. Advanced
power management features allow one to design for low power mobile applica-
tions. RAS (Reliable, Available, Serviceable) error handling features make PCI
Express suitable for robust high-end server applications. Hot plug, power man-
agement, error handling and interrupt signaling are accomplished in-band
using packet based messaging rather than side-band signals. This keeps the
device pin count low and reduces system cost.

The configuration address space available per function is extended to 4KB,
allowing designers to define additional registers. However, new software is
required to access this extended configuration register space.

Looking into the Future

In the future, PCI Express communication frequencies are expected to double
and quadruple to 5 Gbits/sec and 10 Gbits/sec. Taking advantage of these fre-
quencies will require Physical Layer re-design of a device with no changes nec-
essary to the higher layers of the device design.

Additional mechanical form factors are expected. Support for a Server 10 Mod-
ule, Newcard (PC Card style), and Cable form factors are expected.

Predecessor Buses Compared

In an effort to compare and contrast features of predecessor buses, the next sec-
tion of this chapter describes some of the key features of IO bus architectures
defined by the PCI Special Interest Group (PCISIG). These buses, shown in
Table 1-1 on page 12, include the PCI 33 MHz bus, PCI- 66 MHz bus, PCI-X 66
MHz/133 MHz buses, PCI-X 266/533 MHz buses and finally PCI Express.

11

PCI Express System Architecture

Table 1-1: Bus Specifications and Release Dates

Bus Type Specification Release Date of Release
PCI 33 MHz 2.0 1993
PCI 66 MHz 2.1 1995
PCI-X 66 MHz and 133 MHz 1.0 1999
PCI-X 266 MHz and 533 MHz 2.0 Q1, 2002
PCI Express 1.0 Q2, 2002

Author’s Disclaimer

In comparing these buses, it is not the authors’ intention to suggest that any one
bus is better than any other bus. Each bus architecture has its advantages and
disadvantages. After evaluating the features of each bus architecture, a particu-
lar bus architecture may turn out to be more suitable for a specific application
than another bus architecture. For example, it is the system designers responsi-
bility to determine whether to implement a PCI-X bus or PCI Express for the I/
O interconnect in a high-end server design. Our goal in this chapter is to docu-
ment the features of each bus architecture so that the designer can evaluate the

various bus architectures.

Bus Performances and Number of Slots Compared

Table 1-2 on page 13 shows the various bus architectures defined by the PCISIG.
The table shows the evolution of bus frequencies and bandwidths. As is obvi-
ous, increasing bus frequency results in increased bandwidth. However,
increasing bus frequency compromises the number of electrical loads or num-
ber of connectors allowable on a bus at that frequency. At some point, for a
given bus architecture, there is an upper limit beyond which one cannot further
increase the bus frequency, hence requiring the definition of a new bus architec-

ture.

12

Chapter 1: Architectural Perspective

Table 1-2: Comparison of Bus Frequency, Bandwidth and Number of Slots
Bus Type Clock Frequency | Peak Bandwidth * le11n(: tt; e;;féi;:d
PCI 32-bit 33 MHz 133 MBytes/sec 4-5
PCI 32-bit 66 MHz 266 MBytes/sec 1-2
PCI-X 32-bit 66 MHz 266 MBytes/sec 4
PCI-X 32-bit 133 MHz 533 MBytes/sec 1-2
PCI-X 32-bit 266 MHz effective | 1066 MBytes/sec 1
PCI-X 32-bit 533 MHz effective | 2131 MByte/sec 1

* Double all these bandwidth numbers for 64-bit bus implementations

PCI Express Aggregate Throughput

A PCI Express interconnect that connects two devices together is referred to as a
Link. A Link consists of either x1, x2, x4, x8, x12, x16 or x32 signal pairs in each
direction. These signals are referred to as Lanes. A designer determines how
many Lanes to implement based on the targeted performance benchmark
required on a given Link.

Table 1-3 shows aggregate bandwidth numbers for various Link width imple-
mentations. As is apparent from this table, the peak bandwidth achievable with
PCI Express is significantly higher than any existing bus today.

Let us consider how these bandwidth numbers are calculated. The transmis-
sion/reception rate is 2.5 Gbits/sec per Lane per direction. To support a greater
degree of robustness during data transmission and reception, each byte of data
transmitted is converted into a 10-bit code (via an 8b/10b encoder in the trans-
mitter device). In other words, for every Byte of data to be transmitted, 10-bits
of encoded data are actually transmitted. The result is 25% additional overhead
to transmit a byte of data. Table 1-3 accounts for this 25% loss in transmission
performance.

13

PCI Express System Architecture

PCI Express implements a dual-simplex Link which implies that data is trans-
mitted and received simultaneously on a transmit and receive Lane. The aggre-
gate bandwidth assumes simultaneous traffic in both directions.

To obtain the aggregate bandwith numbers in Table 1-3 multiply 2.5 Gbits/sec
by 2 (for each direction), then multiply by number of Lanes, and finally divide
by 10-bits per Byte (to account for the 8-to-10 bit encoding).

Table 1-3: PCI Express Aggregate Throughput for Various Link Widths

IiiC;kE:\l])iI;tS; x1 x2 x4 x8 x12 x16 x32
Aggregate Band- 0.5 1 2 4 6 8 16
width (GBytes/sec)

Performance Per Pin Compared

As is apparent from Figure 1-1, PCI Express achieves the highest bandwidth per
pin. This results in a device package with fewer pins and a motherboard imple-
mentation with few wires and hence overall reduced system cost per unit band-
width.

In Figure 1-1, the first 7 bars are associated with PCI and PCI-X buses where we
assume 84 pins per device. This includes 46 signal pins, interrupt and power
management pins, error pins and the remainder are power and ground pins.
The last bar associated with a x8 PCI Express Link assumes 40 pins per device
which include 32 signal lines (8 differential pairs per direction) and the rest are
power and ground pins.

14

Chapter 1: Architectural Perspective

Fiqure 1-1: Comparison of Performance Per Pin for Various Buses

Bandwidth/Pin (MBytes/s)

100+
90+
80+
70+
60
50+
40
30+
20+
101

0

100
£2.0
., 12.8

16 3.2 3.2 =
> b= p= = = p= . .9
) © ©) © ™ XD
™ © © ™ © ™ L
5 3 % x5 & %3
o o) - - - L_I) iz
o
=g & 8B &3

15

PCI Express System Architecture

I/O Bus Architecture Perspective

33 MHz PCI Bus Based System

Figure 1-2 on page 17 is a 33 MHz PCI bus based system. The PCI system con-
sists of a Host (CPU) bus-to-PCI bus bridge, also referred to as the North bridge.
Associated with the North bridge is the system memory bus, graphics (AGP)
bus, and a 33 MHz PCI bus. I/O devices share the PCI bus and are connected to
it in a multi-drop fashion. These devices are either connected directly to the PCI
bus on the motherboard or by way of a peripheral card plugged into a connec-
tor on the bus. Devices connected directly to the motherboard consume one
electrical load while connectors are accounted for as 2 loads. A South bridge
bridges the PCI bus to the ISA bus where slower, lower performance peripher-
als exist. Associated with the south bridge is a USB and IDE bus. A CD or hard
disk is associated with the IDE bus. The South bridge contains an interrupt con-
troller (not shown) to which interrupt signals from PCI devices are connected.
The interrupt controller is connected to the CPU via an INTR signal or an APIC
bus. The South bridge is the central resource that provides the source of reset,
reference clock, and error reporting signals. Boot ROM exists on the ISA bus
along with a Super IO chip, which includes keyboard, mouse, floppy disk con-
troller and serial/parallel bus controllers. The PCI bus arbiter logic is included
in the North bridge.

Figure 1-3 on page 18 represents a typical PCI bus cycle. The PCI bus clock is 33
MHz. The address bus width is 32-bits (4GB memory address space), although
PCI optionally supports 64-bit address bus. The data bus width is implemented
as either 32-bits or 64-bits depending on bus performance requirement. The
address and data bus signals are multiplexed on the same pins (AD bus) to
reduce pin count. Command signals (C/BE#) encode the transaction type of the
bus cycle that master devices initiate. PCI supports 12 transaction types that
include memory, IO, and configuration read/write bus cycles. Control signals
such as FRAME#, DEVSEL#, TRDY#, IRDY#, STOP# are handshake signals
used during bus cycles. Finally, the PCI bus consists of a few optional error
related signals, interrupt signals and power management signals. A PCI master
device implements a minimum of 49 signals.

Any PCI master device that wishes to initiate a bus cycle first arbitrates for use
of the PCI bus by asserting a request (REQ#) to the arbiter in the North bridge.
After receiving a grant (GNT#) from the arbiter and checking that the bus is
idle, the master device can start a bus cycle.

16

Chapter 1: Architectural Perspective

Figure 1-2: 33 MHz PCI Bus Based Platform

a

Processor

North Bridge R
(Intel 440) | SDRAM

Slots

tPC|-33|\/|Hzt [_I]_I]_I]_>
South Bridge @

ISA

! | | ~
Boot Modem Audio Super _H
S R

ROM Chip Chip

WY T

Electrical Load Limit of a 33 MHz PCI Bus

The PCI specification theoretically supports 32 devices per PCI bus. This means
that PCI enumeration software will detect and recognize up to 32 devices per
bus. However, as a rule of thumb, a PCI bus can support a maximum of 10-12
electrical loads (devices) at 33 MHz. PCI implements a static clocking protocol
with a clock period of 30 ns at 33 MHz.

PCI implements reflected-wave switching signal drivers. The driver drives a
half signal swing signal on the rising edge of PCI clock. The signal propagates
down the PCI bus transmission line and is reflected at the end of the transmis-
sion line where there is no termination. The reflection causes the half swing sig-
nal to double. The doubled (full signal swing) signal must settle to a steady state

17

PCI Express System Architecture

value with sufficient setup time prior to the next rising edge of PCI clock where
receiving devices sample the signal. The total time from when a driver drives a
signal until the receiver detects a valid signal (including propagation time and
reflection delay plus setup time) must be less than the clock period of 30 ns.

Figure 1-3: Typical PCI Burst Memory Read Bus Cycle

Wait
State

Wait
State

Wait
State

Address|
Phase

| Data Phase 1

Data Phase 2

Data Phase 3

FRAME#F\

AD'—

I
I
[}
1
I
I
I
1
I
:
I
Addr ’I‘
I I
:

ciBer (i) et

Data
1

Byte

Déta\
2

:]] A
cLK WWLNU

i

ables 4 Enaybles 4 Enables

1
1
1
1
1
1
1
1
A

I
I
|
I
A

i:J)“

"L
I
I
|
4
/
]]

| ! | | ' I l
— 1 [1 1 ! !
IRDY# | BNV EANYE
| ! | i ! ! l ! |
L 1 1 ' : [I 1
— I ! I I : I !

TRDY# | ; AN A ! L
R
. : ! L ! .
DEVSEL# . ! ! : | ! : !
! i ! : i | ; i !
. I l ! ; | ! I l
1 1 1 T 1 T !
GNT# | ! : : ! ! i ! !
| ! i i ! ! ! ! |
! I L

The more electrical loads on a bus, the longer it takes for the signal to propagate
and double with sufficient setup to the next rising edge of clock. As mentioned
earlier, a 33 MHz PCI bus meets signal timing with no more than 10-12 loads.
Connectors on the PCI bus are counted as 2 loads because the connector is
accounted for as one load and the peripheral card with a PCI device is the sec-
ond load. As indicated in Table 1-2 on page 13 a 33 MHz PCI bus can be

designed with a maximum of 4-5 connectors.

18

Chapter 1: Architectural Perspective

To connect any more than 10-12 loads in a system requires the implementation
of a PCI-to-PCI bridge as shown in Figure 1-4. This permits an additional 10-12
loads to be connected on the secondary PCI bus 1. The PCI specification theoret-
ically supports up to 256 buses in a system. This means that PCI enumeration
software will detect and recognize up to 256 PCI bridges per system.

Figure 1-4: 33 MHz PCI Based System Showing Implementation of a PCI-to-PCI Bridge

r

formad\

Processor

North Bridge
(Intel 440) SDRAM

Slots

PCI
Bridge

South Bridge

S
) ISA

0

| | | ~ :
Boot Modem Audio [%_ Super _[%ﬂ
ROM Chip Chip) 10
0 o he §
@)
ov COM1
COM2

PCI Transaction Model - Programmed 10

Consider an example in which the CPU communicates with a PCI peripheral
such as an Ethernet device shown in Figure 1-5. Transaction 1 shown in the fig-
ure, which is initiated by the CPU and targets a peripheral device, is referred to
as a programmed IO transaction. Software commands the CPU to initiate a
memory or IO read/write bus cycle on the host bus targeting an address
mapped in a PCI device’s address space. The North bridge arbitrates for use of
the PCI bus and when it wins ownership of the bus generates a PCI memory or
IO read/write bus cycle represented in Figure 1-3 on page 18. During the first
clock of this bus cycle (known as the address phase), all target devices decode

19

PCI Express System Architecture

the address. One target (the Ethernet device in this example) decodes the
address and claims the transaction. The master (North bridge in this case) com-
municates with the claiming target (Ethernet controller). Data is transferred
between master and target in subsequent clocks after the address phase of the
bus cycle. Either 4 bytes or 8 bytes of data are transferred per clock tick depend-
ing on the PCI bus width. The bus cycle is referred to as a burst bus cycle if data
is transferred back-to-back between master and target during multiple data
phases of that bus cycle. Burst bus cycles result in the most efficient use of PCI
bus bandwidth.

Figure 1-5: PCI Transaction Model

a

Processor

l 1) Programmed 10

North B-idge
C] (Intel £ 40) | SDRAM

PCI-33MHz

kz) DMA
Slots
3) Peer-to-Peer E |||||||

177

South Bridge @

ISA

! | | ~
Boot Modem Audio 1 Super
ﬁ‘v_

ROM Chip Chip

0 5P com

COM2

i &0

At 33 MHz and the bus width of 32-bits (4 Bytes), peak bandwidth achievable is
4 Bytes x 33 MHz = 133 MBytes/sec. Peak bandwidth on a 64-bit bus is 266
Mbytes/sec. See Table 1-2 on page 13.

20

2 Architecture
Overview

Previous Chapter

The previous chapter described performance advantages and key features of
the PCI Express (PCI-XP) Link. To highlight these advantages, the chapter
described performance characteristics and features of predecessor buses such as
PCI and PCI-X buses with the goal of discussing the evolution of PCI Express
from these predecessor buses. It compared and contrasted features and perfor-
mance points of PCI, PCI-X and PCI Express buses. The key features of a PCI
Express system were described. The chapter in addition described some exam-
ples of PCI Express system topologies.

This Chapter

This chapter is an introduction to the PCI Express data transfer protocol. It
describes the layered approach to PCI Express device design while describing
the function of each device layer. Packet types employed in accomplishing data
transfers are described without getting into packet content details. Finally, this
chapter outlines the process of a requester initiating a transaction such as a
memory read to read data from a completer across a Link.

The Next Chapter

The next chapter describes how packets are routed through a PCI Express fabric
consisting of switches. Packets are routed based on a memory address, 10
address, device ID or implicitly.

Introduction to PCI Express Transactions

PCI Express employs packets to accomplish data transfers between devices. A
root complex can communicate with an endpoint. An endpoint can communi-
cate with a root complex. An endpoint can communicate with another end-
point. Communication involves the transmission and reception of packets
called Transaction Layer packets (TLPs).

55

PCI Express System Architecture

PCI Express transactions can be grouped into four categories:

1) memory, 2) IO, 3) configuration, and 4) message transactions. Memory, 10
and configuration transactions are supported in PCI and PCI-X architectures,
but the message transaction is new to PCI Express. Transactions are defined as
a series of one or more packet transmissions required to complete an informa-
tion transfer between a requester and a completer. Table 2-1 is a more detailed
list of transactions. These transactions can be categorized into non-posted trans-
actions and posted transactions.

Table 2-1: PCI Express Non-Posted and Posted Transactions

Transaction Type Non-Posted or Posted
Memory Read Non-Posted
Memory Write Posted
Memory Read Lock Non-Posted
IO Read Non-Posted
IO Write Non-Posted

Configuration Read (Type 0 and Type 1) Non-Posted

Configuration Write (Type 0 and Type 1) Non-Posted

Message Posted

For Non-posted transactions, a requester transmits a TLP request packet to a
completer. At a later time, the completer returns a TLP completion packet back
to the requester. Non-posted transactions are handled as split transactions simi-
lar to the PCI-X split transaction model described on page 37 in Chapter 1. The
purpose of the completion TLP is to confirm to the requester that the completer
has received the request TLP. In addition, non-posted read transactions contain
data in the completion TLP. Non-Posted write transactions contain data in the
write request TLP.

For Posted transactions, a requester transmits a TLP request packet to a compl-
eter. The completer however does NOT return a completion TLP back to the
requester. Posted transactions are optimized for best performance in completing
the transaction at the expense of the requester not having knowledge of success-
ful reception of the request by the completer. Posted transactions may or may
not contain data in the request TLP.

56

Chapter 2: Architecture Overview

PCIl Express Transaction Protocol

Table 2-2 lists all of the TLP request and TLP completion packets. These packets
are used in the transactions referenced in Table 2-1. Our goal in this section is to
describe how these packets are used to complete transactions at a system level
and not to describe the packet routing through the PCI Express fabric nor to

describe packet contents in any detail.

Table 2-2: PCI Express TLP Packet Types

TLP Packet Types Ab;r:;I:ted
Memory Read Request MRd
Memory Read Request - Locked access MRdLk
Memory Write Request MWr
IO Read IORd
IO Write IOWr
Configuration Read (Type 0 and Type 1) CfgRdO,
CfgRdl1
Configuration Write (Type 0 and Type 1) CfgWr0,
CfgWrl
Message Request without Data Msg
Message Request with Data MsgD
Completion without Data Cpl
Completion with Data CplD
Completion without Data - associated with Locked Memory Read | CplLk
Requests
Completion with Data - associated with Locked Memory Read CpIDLk

Requests

57

PCI Express System Architecture

Non-Posted Read Transactions

Figure 2-1 shows the packets transmitted by a requester and completer to com-
plete a non-posted read transaction. To complete this transfer, a requester trans-
mits a non-posted read request TLP to a completer it intends to read data from.
Non-posted read request TLPs include memory read request (MRd), 1O read
request (IORd), and configuration read request type 0 or type 1 (CfgRdO,
CfgRd1) TLPs. Requesters may be root complex or endpoint devices (endpoints
do not initiate configuration read /write requests however).

The request TLP is routed through the fabric of switches using information in
the header portion of the TLP. The packet makes its way to a targeted completer.
The completer can be a root complex, switches, bridges or endpoints.

When the completer receives the packet and decodes its contents, it gathers the
amount of data specified in the request from the targeted address. The compl-
eter creates a single completion TLP or multiple completion TLPs with data
(CpID) and sends it back to the requester. The completer can return up to 4
KBytes of data per CplD packet.

The completion packet contains routing information necessary to route the
packet back to the requester. This completion packet travels through the same
path and hierarchy of switches as the request packet.

Requesters uses a tag field in the completion to associate it with a request TLP
of the same tag value it transmitted earlier. Use of a tag in the request and com-
pletion TLPs allows a requester to manage multiple outstanding transactions.

If a completer is unable to obtain requested data as a result of an error, it returns
a completion packet without data (Cpl) and an error status indication. The
requester determines how to handle the error at the software layer.

58

Chapter 2: Architecture Overview

Figure 2-1: Non-Posted Read Transaction Protocol

MRd, IORd,
CfgRdO0, CfgRd1

—

Requester

G
CpID or Cpl

Legend:
MRd = Memory Read Request

IORd = 10 Read Request

CfgRdO = Type 0 Configuration Read Request

CfgRd1 = Type 1 Configuration Read Request

CpID = Completion with data for normal completion of MRd, IORd, CfgRdO0, CfgRd1
Cpl = Completion without data for error completion of MRd, IORd, CfgRd0, CfgRd1

Non-Posted Read Transaction for Locked Requests

Figure 2-2 on page 60 shows packets transmitted by a requester and completer
to complete a non-posted locked read transaction. To complete this transfer, a
requester transmits a memory read locked request (MRdLk) TLP. The requester
can only be a root complex which initiates a locked request on the behalf of the
CPU. Endpoints are not allowed to initiate locked requests.

The locked memory read request TLP is routed downstream through the fabric
of switches using information in the header portion of the TLP. The packet
makes its way to a targeted completer. The completer can only be a legacy end-
point. The entire path from root complex to the endpoint (for TCs that map to
VC0) is locked including the ingress and egress port of switches in the pathway.

59

PCI Express System Architecture

Figure 2-2: Non-Posted Locked Read Transaction Protocol

MRdLk

—

Requester

—
CpIDLk or CplLk

Legend:
MRdLk = Memory Read Lock Request

CpIDLk = Locked normal Completion with data for normal completion of MRdLk
CplLk = Locked error Completion without data for error completion of MRdLk

When the completer receives the packet and decodes its contents, it gathers the
amount of data specified in the request from the targeted address. The compl-
eter creates one or more locked completion TLP with data (CplDLk) along with
a completion status. The completion is sent back to the root complex requester
via the path and hierarchy of switches as the original request.

The CplDLk packet contains routing information necessary to route the packet
back to the requester. Requesters uses a tag field in the completion to associate it
with a request TLP of the same tag value it transmitted earlier. Use of a tag in
the request and completion TLPs allows a requester to manage multiple out-
standing transactions.

If the completer is unable to obtain the requested data as a result of an error, it
returns a completion packet without data (CplLk) and an error status indication
within the packet. The requester who receives the error notification via the
CplLk TLP must assume that atomicity of the lock is no longer guaranteed and
thus determine how to handle the error at the software layer.

The path from requester to completer remains locked until the requester at a
later time transmits an unlock message to the completer. The path and ingress/
egress ports of a switch that the unlock message passes through are unlocked.

60

Chapter 2: Architecture Overview

Non-Posted Write Transactions

Figure 2-3 on page 61 shows the packets transmitted by a requester and compl-
eter to complete a non-posted write transaction. To complete this transfer, a
requester transmits a non-posted write request TLP to a completer it intends to
write data to. Non-posted write request TLPs include IO write request (IOWr),
configuration write request type 0 or type 1 (CfgWr0, CfgWr1) TLPs. Memory
write request and message requests are posted requests. Requesters may be a
root complex or endpoint device (though not for configuration write requests).

Figure 2-3: Non-Posted Write Transaction Protocol

IOWr, CfgWr0, CfgWrl
—_—

Requester

Legend:
IOWr = 10 Write Request

CfgWr0 = Type 0 Configuration Write Request
CfgWrl = Type 1 Configuration Write Request
Cpl = Completion without data for normal or error completion of IOWr, CfgWr0, CfgWrl

A request packet with data is routed through the fabric of switches using infor-
mation in the header of the packet. The packet makes its way to a completer.

When the completer receives the packet and decodes its contents, it accepts the
data. The completer creates a single completion packet without data (Cpl) to
confirm reception of the write request. This is the purpose of the completion.

61

PCI Express System Architecture

The completion packet contains routing information necessary to route the
packet back to the requester. This completion packet will propagate through the
same hierarchy of switches that the request packet went through before making
its way back to the requester. The requester gets confirmation notification that
the write request did make its way successfully to the completer.

If the completer is unable to successfully write the data in the request to the
final destination or if the write request packet reaches the completer in error,
then it returns a completion packet without data (Cpl) but with an error status
indication. The requester who receives the error notification via the Cpl TLP
determines how to handle the error at the software layer.

Posted Memory Write Transactions

Memory write requests shown in Figure 2-4 are posted transactions. This
implies that the completer returns no completion notification to inform the
requester that the memory write request packet has reached its destination suc-
cessfully. No time is wasted in returning a completion, thus back-to-back posted
writes complete with higher performance relative to non-posted transactions.

The write request packet which contains data is routed through the fabric of
switches using information in the header portion of the packet. The packet
makes its way to a completer. The completer accepts the specified amount of
data within the packet. Transaction over.

If the write request is received by the completer in error, or is unable to write the
posted write data to the final destination due to an internal error, the requester
is not informed via the hardware protocol. The completer could log an error and
generate an error message notification to the root complex. Error handling soft-
ware manages the error.

62

Chapter 2: Architecture Overview

Figure 2-4: Posted Memory Write Transaction Protocol

MWr
—_—

\ 4

Requester

Legend:
MWr = Memory Write Request. No completions for this transaction

Posted Message Transactions

Message requests are also posted transactions as pictured in Figure 2-5 on page
64. There are two categories of message request TLPs, Msg and MsgD. Some
message requests propagate from requester to completer, some are broadcast
requests from the root complex to all endpoints, some are transmitted by an
endpoint to the root complex. Message packets may be routed to completer(s)
based on the message’s address, device ID or routed implicitly. Message request
routing is covered in Chapter 3.

The completer accepts any data that may be contained in the packet (if the
packet is MsgD) and/or performs the task specified by the message.

Message request support eliminates the need for side-band signals in a PCI
Express system. They are used for PCI style legacy interrupt signaling, power
management protocol, error signaling, unlocking a path in the PCI Express fab-
ric, slot power support, hot plug protocol, and vender defined purposes.

63

PCI Express System Architecture

Figure 2-5: Posted Message Transaction Protocol

Msg, MsgD

—

Requester

Legend:
Msg = Message Request without data

MsgD = Message Request with data

Some Examples of Transactions

This section describes a few transaction examples showing packets transmitted
between requester and completer to accomplish a transaction. The examples
consist of a memory read, IO write, and Memory write.

Memory Read Originated by CPU, Targeting an Endpoint

Figure 2-6 shows an example of packet routing associated with completing a
memory read transaction. The root complex on the behalf of the CPU initiates a
non-posted memory read from the completer endpoint shown. The root com-
plex transmits an MRd packet which contains amongst other fields, an address,
TLP type, requester ID (of the root complex) and length of transfer (in double-
words) field. Switch A which is a 3 port switch receives the packet on its

64

Chapter 2: Architecture Overview

upstream port. The switch logically appears like a 3 virtual bridge device con-
nected by an internal bus. The logical bridges within the switch contain mem-
ory and IO base and limit address registers within their configuration space
similar to PCI bridges. The MRd packet address is decoded by the switch and
compared with the base/limit address range registers of the two downstream
logical bridges. The switch internally forwards the MRd packet from the
upstream ingress port to the correct downstream port (the left port in this exam-
ple). The MRd packet is forwarded to switch B. Switch B decodes the address in
a similar manner. Assume the MRd packets is forwarded to the right-hand port
so that the completer endpoint receives the MRd packet.

Figure 2-6: Non-Posted Memory Read Originated by CPU and Targeting an Endpoint

Processor Processor

}

MRd I

Requester:
-Step 1: Root Complex (requester\
initiates Memory Read Request (MRd)

-Step 4: Root Complex receives CplD

MRd¥ Comblet
ompleter:
I — -Step 2: Endpoint (completer)

receives MRd
-Step 3: Endpoint returns
Completion with data (CpID)

The completer decodes the contents of the header within the MRd packet, gath-
ers the requested data and returns a completion packet with data (CplD). The
header portion of the completion TLP contains the requester ID copied from the
original request TLP. The requester ID is used to route the completion packet
back to the root complex.

65

3 Address Spaces &
Transaction Routing

The Previous Chapter

The previous chapter introduced the PCI Express data transfer protocol. It
described the layered approach to PCI Express device design while describing
the function of each device layer. Packet types employed in accomplishing data
transfers were described without getting into packet content details. Finally, this
chapter outlined the process of a requester initiating a transaction such as a
memory read to read data from a completer across a Link.

This Chapter

This chapter describes the general concepts of PCI Express transaction routing
and the mechanisms used by a device in deciding whether to accept, forward,
or reject a packet arriving at an ingress port. Because Data Link Layer Packets
(DLLPs) and Physical Layer ordered set link traffic are never forwarded, the
emphasis here is on Transaction Layer Packet (TLP) types and the three routing
methods associated with them: address routing, ID routing, and implicit rout-
ing. Included is a summary of configuration methods used in PCI Express to set
up PCl-compatible plug-and-play addressing within system IO and memory
maps, as well as key elements in the PCI Express packet protocol used in mak-
ing routing decisions.

The Next Chapter

The next chapter details the two major classes of packets are Transaction Layer
Packets (TLPs), and Data Link Layer Packets (DLLPs). The use and format of each
TLP and DLLP packet type is covered, along with definitions of the field within
the packets.

105

PCI Express System Architecture

Introduction

Unlike shared-bus architectures such as PCI and PCI-X, where traffic is visible
to each device and routing is mainly a concern of bridges, PCI Express devices
are dependent on each other to accept traffic or forward it in the direction of the
ultimate recipient.

Figure 3-1: Multi-Port PCI Express Devices Have Routing Responsibilities

CPU

Root Complex System
(ouTl(in] Memory

|IN JjouT

Legacy
Endpoint

Switch
Use
S

Traffic T?r es!
Physical Layer Ordered Sets

Data Link Layer Packets (DLLPs)
Transaction Layer Packets (TLPs)

' |N=INGRESS PORT,

I OUT = EGRESS PORT

/
@
|
|
|

PCI-XP
Endpoint

PCI(X)

106

Chapter 3: Address Spaces & Transaction Routing

As illustrated in Figure 3-1 on page 106, a PCI Express topology consists of
independent, point-to-point links connecting each device with one or more
neighbors. As traffic arrives at the inbound side of a link interface (called the
ingress port), the device checks for errors, then makes one of three decisions:

1. Accept the traffic and use it internally.

2. Forward the traffic to the appropriate outbound (egress) port.

3. Reject the traffic because it is neither the intended target nor an interface to
it (note that there are also other reasons why traffic may be rejected)

Receivers Check For Three Types of Link Traffic

Assuming a link is fully operational, the physical layer receiver interface of each
device is prepared to monitor the logical idle condition and detect the arrival of
the three types of link traffic: Ordered Sets, DLLPs, and TLPs. Using control (K)
symbols which accompany the traffic to determine framing boundaries and
traffic type, PCI Express devices then make a distinction between traffic which
is local to the link vs. traffic which may require routing to other links (e.g. TLPs).
Local link traffic, which includes Ordered Sets and Data Link Layer Packets
(DLLPs), isn’t forwarded and carries no routing information. Transaction Layer
Packets (TLPs) can and do move from link to link, using routing information
contained in the packet headers.

Multi-port Devices Assume the Routing Burden

It should be apparent in Figure 3-1 on page 106 that devices with multiple PCI
Express ports are responsible for handling their own traffic as well as forward-
ing other traffic between ingress ports and any enabled egress ports. Also note
that while peer-peer transaction support is required of switches, it is optional
for a multi-port Root Complex. It is up to the system designer to account for
peer-to-peer traffic when selecting devices and laying out a motherboard.

Endpoints Have Limited Routing Responsibilities

It should also be apparent in Figure 3-1 on page 106 that endpoint devices have
a single link interface and lack the ability to route inbound traffic to other links.
For this reason, and because they don’t reside on shared busses, endpoints
never expect to see ingress port traffic which is not intended for them (this is
different than shared-bus PCI(X), where devices commonly decode addresses

107

PCI Express System Architecture

and commands not targeting them). Endpoint routing is limited to accepting or
rejecting transactions presented to them.

System Routing Strategy Is Programmed

Before transactions can be generated by a requester, accepted by the completer,
and forwarded by any devices in the path between the two, all devices must be
configured to enforce the system transaction routing scheme. Routing is based
on traffic type, system memory and IO address assignments, etc. In keeping
with PCI plug-and-play configuration methods, each PCI express device is dis-
covered, memory and IO address resources are assigned to them, and switch/
bridge devices are programmed to forward transactions on their behalf. Once
routing is programmed, bus mastering and target address decoding are
enabled. Thereafter, devices are prepared to generate, accept, forward, or reject
transactions as necessary.

Two Types of Local Link Traffic

Local traffic occurs between the transmit interface of one device and the receive
interface of its neighbor for the purpose of managing the link itself. This traffic
is never forwarded or flow controlled; when sent, it must be accepted. Local
traffic is further classified as Ordered Sets exchanged between the Physical Lay-
ers of two devices on a link or Data Link Layer packets (DLLPs) exchanged
between the Data Link Layers of the two devices.

Ordered Sets

These are sent by each physical layer transmitter to the physical layer of the cor-
responding receiver to initiate link training, compensate for clock tolerance, or
transition a link to and from the Electrical Idle state. As indicated in Table 3-1 on
page 109, there are five types of Ordered Sets.

Each ordered set is constructed of 10-bit control (K) symbols that are created
within the physical layer. These symbols have a common name as well as a
alph-numeric code that defines the 10 bits pattern of 1s and 0Os, of which they are
comprised. For example, the SKP (Skip) symbol has a 10-bit value represented
as K28.0.

108

Chapter 3: Address Spaces & Transaction Routing

Figure 3-2 on page 110 illustrates the transmission of Ordered Sets. Note that
each ordered set is fixed in size, consisting of 4 or 16 characters. Again, the
receiver is required to consume them as they are sent. Note that the COM con-
trol symbol (K28.5) is used to indicate the start of any ordered set.

Refer to the “8b/10b Encoding” on page 419 for a thorough discussion of

Ordered Sets.
Table 3-1: Ordered Set Types
Ordered Set Type Symbols Purpose
Fast Training Sequence (FTS) | COM, 3 FTS | Quick synchronization of bit stream
when leaving L0s power state.
Training Sequence One (TS1) | COM, Lane | Used in link training, to align and
ID, 14 more | synchronize the incoming bit stream
at startup, convey reset, other func-
tions.
Training Sequence Two (TS2) | COM, Lane | See TS1.
ID, 14 more
Electrical Idle (IDLE) COM, 3IDL | Indicates that link should be brought
to a lower power state (LOs, L1, L2).
Skip COM, 3 SKP | Inserted periodically to compensate
for clock tolerances.

109

PCI Express System Architecture

Figure 3-2: PCI Express Link Local Traffic: Ordered Sets

CPU

Root Complex | System
[out][in] out][] Memory

IN JlouT
Legacy
Endpoint

K28.5 K280 K280 K28.0

[com][sKIP][sKIP][SKIP] SKIP

ELECTRICAL IDLE

F / Local Traffic: Ordered Sets
|
|

OUTH IN]

pC|_xp K285 K28.1 K28.1 K28.1
; [cOMI| FTS| FTS |[FTS| FAST TRAINING SEQUENCE (FTS)
Endpoint ey D102
[Com|[LNK#[LNE#]| | = = =[TS1ID| TRAINING SEQUENCE ONE (TS1)
K28.5 D5.2
[com|[LNK#[LNE#] | = = =[TS2ID| TRAINING SEQUENCE TWO (TS2)

(M @ (3 @) = = = (16) (Symbol Order)

Receiver decode of COM symbol indicates start of an ordered set.

110

Packet-Based
Transactions

The Previous Chapter

The previous chapter described the general concepts of PCI Express transaction
routing and the mechanisms used by a device in deciding whether to accept,
forward, or reject a packet arriving at an ingress port. Because Data Link Layer
Packets (DLLPs) and Physical Layer ordered set link traffic are never forwarded,
the emphasis here is on Transaction Layer Packet (TLP) types and the three
routing methods associated with them: address routing, ID routing, and
implicit routing. Included is a summary of configuration methods used in PCI
Express to set up PCI-compatible plug-and-play addressing within system 10
and memory maps, as well as key elements in the PCI Express packet protocol
used in making routing decisions.

This Chapter

Information moves between PCI Express devices in packets, and the two major
classes of packets are Transaction Layer Packets (TLPs), and Data Link Layer Pack-
ets (DLLPs). The use, format, and definition of all TLP and DLLP packet types
and their related fields are detailed in this chapter.

The Next Chapter

The next chapter discusses the Ack/Nak Protocol that verifies the delivery of
TLPs between each port as they travel between the requester and completer
devices. This chapter details the hardware retry mechanism that is automati-
cally triggered when a TLP transmission error is detected on a given link.

153

PCI Express System Architecture

Introduction to the Packet-Based Protocol

The PCI Express protocol improves upon methods used by earlier busses (e.g.
PCI) to exchange data and to signal system events. In addition to supporting
basic memory, IO, and configuration read/write transactions, the links elimi-
nate many sideband signals and replaces them with in-band messages.

With the exception of the logical idle indication and physical layer Ordered Sets,
all information moves across an active PCI Express link in fundamental chunks
called packets which are comprised of 10 bit control (K) and data (D) symbols.
The two major classes of packets exchanged between two PCI Express devices
are high level Transaction Layer Packets (TLPs), and low-level link maintenance
packets called Data Link Layer Packets (DLLPs). Collectively, the various TLPs
and DLLPs allow two devices to perform memory, IO, and Configuration Space
transactions reliably and use messages to initiate power management events,
generate interrupts, report errors, etc. Figure 4-1 on page 155 depicts TLPs and
DLLPs on a PCI Express link.

Why Use A Packet-Based Transaction Protocol

There are some distinct advantages in using a packet-based protocol, especially
when it comes to data integrity. Three important aspects of PCI Express packet
protocol help promote data integrity during link transmission:

Packet Formats Are Well Defined

Some early bus protocols (e.g. PCI) allow transfers of indeterminate (and unlim-
ited) size, making identification of payload boundaries impossible until the end
of the transfer. In addition, an early transaction end might be signaled by either
agent (e.g. target disconnect on a write or pre-emption of the initiator during a
read), resulting in a partial transfer. In these cases, it is difficult for the sender of
data to calculate and send a checksum or CRC covering an entire payload, when
it may terminate unexpectedly. Instead, PCI uses a simple parity scheme which
is applied and checked for each bus phase completed.

In contrast, each PCI Express packet has a known size and format, and the
packet header--positioned at the beginning of each DLLP and TLP packet-- indi-
cates the packet type and presence of any optional fields. The size of each
packet field is either fixed or defined by the packet type. The size of any data
payload is conveyed in the TLP header Length field. Once a transfer commences,
there are no early transaction terminations by the recipient. This structured

154

Chapter 4: Packet-Based Transactions

packet format makes it possible to insert additional information into the packet
into prescribed locations, including framing symbols, CRC, and a packet

sequence number (TLPs only).

Figure 4-1: TLP And DLLP Packets

PCI-XP Device A
I

Device Core |

Transaction Layer
Data Link Layer

Physical Layer

(RX) (TX)

PCI-XP Device B

[Devicg Core |

Transaction Layer

Data Link Layer

Physical Layer

(RX) (TX)

G —EE —

L*E]!!Ek—

(J wink)

Link Transaction Layer Packet (TLP)

TLP Types:

Framing | Sequence __ 1'32:bit | Framing memow Eeagfnlﬂcﬁed
& RO i

Data Link Layer Packet (DLLP)

Framing DLLP = Framlng DLLP Types:
(SDP) (S0 TLP Ack/Nak
Power Management

Link Flow Control
Vendor-Specific

10 Read

10 Write

Configuration Read-Type 0,
Configuration Write-Type 0,
Completion-Unlocked
Completion-Locked
Completion w/data-Unlocke
Completion w/data-Locked
Message Request
Message Request w/data

155

PCI Express System Architecture

Framing Symbols Indicate Packet Boundaries

Each TLP and DLLP packet sent is framed with a Start and End control symbol,
clearly defining the packet boundaries to the receiver. Note that the Start and
End control (K) symbols appended to packets by the transmitting device are 10
bits each. This is a big improvement over PCI and PCI-X which use the assertion
and de-assertion of a single FRAME# signal to indicate the beginning and end
of a transaction. A glitch on the FRAME# signal (or any of the other PCI/PCIX
control signals) could cause a target to misconstrue bus events. In contrast, a
PCI Express receiver must properly decode a complete 10 bit symbol before
concluding link activity is beginning or ending. Unexpected or unrecognized
control symbols are handled as errors.

CRC Protects Entire Packet

Unlike the side-band parity signals used by PCI devices during the address and
each data phase of a transaction, the in-band 16-bit or 32-bit PCI Express CRC
value “protects” the entire packet (other than framing symbols). In addition to
CRC, TLP packets also have a packet sequence number appended to them by the
transmitter so that if an error is detected at the receiver, the specific packet(s)
which were received in error may be resent. The transmitter maintains a copy of
each TLP sent in a Retry Buffer until it is checked and acknowledged by the
receiver. This TLP acknowledgement mechanism (sometimes referred to as the
Ack/Nak protocol) forms the basis of link-level TLP error correction and is very
important in deep topologies where devices may be many links away from the
host in the event an error occurs and CPU intervention would otherwise be
needed.

Transaction Layer Packets

In PCI Express terminology, high-level transactions originate at the device core
of the transmitting device and terminate at the core of the receiving device. The
Transaction Layer is the starting point in the assembly of outbound Transaction
Layer Packets (TLPs), and the end point for disassembly of inbound TLPs at the
receiver. Along the way, the Data Link Layer and Physical Layer of each device
contribute to the packet assembly and disassembly as described below.

156

Chapter 4: Packet-Based Transactions

TLPs Are Assembled And Disassembled

Figure 4-2 on page 158 depicts the general flow of TLP assembly at the transmit
side of a link and disassembly at the receiver. The key stages in Transaction
Layer Packet protocol are listed below. The numbers correspond to those in Fig-
ure 4-2.

1.

Device B’s core passes a request for service to the PCI Express hardware
interface. How this done is not covered by the PCI Express Specification,
and is device-specific. General information contained in the request would
include:

— The PCI Express command to be performed

— Start address or ID of target (if address routing or ID routing are used)
— Transaction type (memory read or write, configuration cycle, etc.)

— Data payload size (and the data to send, if any)

— Virtual Channel/Traffic class information

— Attributes of the transfer: No Snoop bit set?, Relaxed Ordering set?, etc.
The Transaction Layer builds the TLP header, data payload, and digest
based on the request from the core. Before sending a TLP to the Data Link
Layer, flow control credits and ordering rules must be applied.

When the TLP is received at the Data Link Layer, a Sequence Number is
assigned and a Link CRC is calculated for the TLP (includes Sequence
Number). The TLP is then passed on to the Physical Layer.

At the Physical Layer, byte striping, scrambling, encoding, and serialization
are performed. STP and END control (K) characters are appended to the
packet. The packet is sent out on the transmit side of the link.

At the Physical Layer receiver of Device A, de-serialization, framing symbol
check, decoding, and byte un-striping are performed. Note that at the Phys-
ical Layer, the first level or error checking is performed (on the control
codes).

The Data Link Layer of the receiver calculates CRC and checks it against the
received value. It also checks the Sequence Number of the TLP for viola-
tions. If there are no errors, it passes the TLP up to the Transaction Layer of
the receiver. The information is decoded and passed to the core of Device A.
The Data Link Layer of the receiver will also notify the transmitter of the
success or failure in processing the TLP by sending an Ack or Nak DLLP to
the transmitter. In the event of a Nak (No Acknowledge), the transmitter
will re-send all TLPs in its Retry Buffer.

157

PCI Express System Architecture

Figure 4-2: PCI Express Layered Protocol And TLP Assembly/Disassembly

158

5 ACK/NAK
Protocol

The Previous Chapter

Information moves between PCI Express devices in packets. The two major
classes of packets are Transaction Layer Packets (TLPs), and Data Link Layer
Packets (DLLPs). The use, format, and definition of all TLP and DLLP packet
types and their related fields were detailed in that chapter.

This Chapter

This chapter describes a key feature of the Data Link Layer: ‘reliable’ transport
of TLPs from one device to another device across the Link. The use of ACK
DLLPs to confirm reception of TLPs and the use of NAK DLLPs to indicate
error reception of TLPs is explained. The chapter describes the rules for replay-
ing TLPs in the event that a NAK DLLP is received.

The Next Chapter

The next chapter discusses Traffic Classes, Virtual Channels, and Arbitration
that support Quality of Service concepts in PCI Express implementations. The
concept of Quality of Service in the context of PCI Express is an attempt to pre-
dict the bandwidth and latency associated with the flow of different transaction
streams traversing the PCI Express fabric. The use of QoS is based on applica-
tion-specific software assigning Traffic Class (TC) values to transactions, which
define the priority of each transaction as it travels between the Requester and
Completer devices. Each TC is mapped to a Virtual Channel (VC) that is used to
manage transaction priority via two arbitration schemes called port and VC
arbitration.

209

PCI Express System Architecture

Reliable Transport of TLPs Across Each Link

The function of the Data Link Layer (shown in Figure 5-1 on page 210) is two
fold:

* ‘Reliable’ transport of TLPs from one device to another device across the
Link.

® The receiver’s Transaction Layer should receive TLPs in the same order that
the transmitter sent them. The Data Link Layer must preserve this order
despite any occurrence of errors that require TLPs to be replayed (retried).

Figure 5-1: Data Link Layer

Memory, I/0, Configuration R/W Requests or Message Requests or Completions

(Software layer sends / receives address/transaction type/data/message index)
Software layer

Transmit Receive
Transaction Layer Packet (TLP Transaction Layer Packet (TP
Data Payload ECRC Data Payload B&v
Transaction Iayer — _ —
—] Flow Control —]

Transmit I - I Receive
Buffers V"\;tual Chann;el mmmm Buffers
per VC anagemen per VC

Link Packet DLLPs e.g.
sequencel TP [Lcre]|ackmakcre]i|ackipcre][sepeee] TP [DKC]

Data Link layer
Y TLP Replay NDe-muxA
Buffer
TLP Error|
N Mux Check
Physical Packet Physical Packe
Link Packet m k Link Packet h‘

Physical layer

Parallel-to-Serial Link Serial-to-Parallel
Differential Driver Differential Receiver

Port
Link

210

Chapter 5: ACK/NAK Protocol

The ACK/NAK protocol associated with the Data Link Layer is described with
the aid of Figure 5-2 on page 211 which shows sub-blocks with greater detail.
For every TLP that is sent from one device (Device A) to another (Device B)
across one Link, the receiver checks for errors in the TLP (using the TLP’s LCRC
field). The receiver Device B notifies transmitter Device A on good or bad recep-
tion of TLPs by returning an ACK or a NAK DLLP. Reception of an ACK DLLP
by the transmitter indicates that the receiver has received one or more TLP(s)
successfully. Reception of a NAK DLLP by the transmitter indicates that the
receiver has received one or more TLP(s) in error. Device A which receives a
NAK DLLP then re-sends associated TLP(s) which will hopefully, arrive at the
receiver successfully without error.

The error checking capability in the receiver and the transmitter’s ability to re-
send TLPs if a TLP is not received correctly is the core of the ACK/NAK proto-
col described in this chapter.

Definition: As used in this chapter, the term Transmitter refers to the device
that sends TLPs.

Definition: As used in this chapter, the term Receiver refers to the device that
receives TLPs.

Figure 5-2: Overview of the ACK/NAK Protocol

Transmit Receiver
Device A Device B
From To
Transaction Layer Transaction Layer

Tx

Data Link Layer
TLP

Sequence| TLP |LCRC

Data Link Layer

DLLP

[sepeee] _Tip_|IDRC

D De-muxA

Error
Check

Replay
e

TP >
sequence] TLP [Lcre

211

PCI Express System Architecture

Elements of the ACK/NAK Protocol

Figure 5-3 is a block diagram of a transmitter and a remote receiver connected
via a Link. The diagram shows all of the major Data Link Layer elements associ-
ated with reliable TLP transfer from the transmitter’s Transaction Layer to the
receiver’s Transaction Layer. Packet order is maintained by the transmitter’s
and receiver’s Transaction Layer.

Figure 5-3: Elements of the ACK/NAK Protocol

From Transaction Layer To Transaction Layer

. . 4 Yes - Block TLP, report DL i i
Transmitter Device A P Receiver Device B
Layer protocol error
> Increment GOOd TLPs
ks TLPs | nTs-AS) mod 4k >= 2048 2[4
y
(5}
@ " NEXT_RCV_SEQ (NRS)
A =
o Sessﬁ;n [—NEXT_TRANSMIT_SEQ (NTS)| TLP =NRS
3 | Increment 1 TLP < NRS (Duplicate TLP) Seq. Num. Check
o " TLP > NRS (Lost TLPs) EPEEL NP & 55
=y - b
% LCRC Generator REPLAY_TIMER 3 DR S0 (MRe)?
—
2 NAK REPLAY_NUM T
Increment 2
Reset} |
Replay Buffer | Purge Older TLPs 2| |scredue S reaue
X Update ACK_SEQ (AS) o ACK NA;
_ e .
s Receive Buffer
No | (Forward Progress) £ NAK_SCHEDULED
AckNak_Seq Num Check < NAK
Yes AckNak_Seq_Num = A
ACK_SEQ (AS) ? ACKINAK | T ACKNAK_LAT
. Pass Generator TIMER
Discard Fal ACK/NAK CRC Check 2| | ACK/NAK
DLLP I

) ‘(Link ‘) ‘

AN

TLP TLP TLP

212

Chapter 5: ACK/NAK Protocol

Transmitter Elements of the ACK/NAK Protocol

Figure 5-4 on page 215 illustrates the transmitter Data Link Layer elements
associated with processing of outbound TLPs and inbound ACK/NAK DLLPs.

Replay Buffer

The replay buffer stores TLPs with all fields including the Data Link Layer-
related Sequence Number and LCRC fields. The TLPs are saved in the order of
arrival from the Transaction Layer before transmission. Each TLP in the Replay
Buffer contains a Sequence Number which is incrementally greater than the
sequence number of the previous TLP in the buffer.

When the transmitter receives acknowledgement via an ACK DLLP that TLPs
have reached the receiver successfully, it purges the associated TLPs from the
Replay Buffer. If, on the other hand, the transmitter receives a NAK DLLP, it
replays (i.e., re-transmits) the contents of the buffer.

NEXT_TRANSMIT_SEQ Counter

This counter generates the Sequence Number assigned to each new transmitted
TLP. The counter is a 12-bit counter that is initialized to 0 at reset, or when the
Data Link Layer is in the inactive state. It increments until it reaches 4095 and
then rolls over to 0 (i.e., it is a modulo 4096 counter).

LCRC Generator

The LCRC Generator provides a 32-bit LCRC for the TLP. The LCRC is calcu-
lated using all fields of the TLP including the Header, Data Payload, ECRC and
Sequence Number. The receiver uses the TLP’s LCRC field to check for a CRC
error in the received TLP.

REPLAY_NUM Count

This 2-bit counter stores the number of replay attempts following either recep-
tion of a NAK DLLP, or a REPLAY_TIMER time-out. When the REPLAY_NUM
count rolls over from 11b to 00b, the Data Link Layer triggers a Physical Layer
Link-retrain (see the description of the LTSSM recovery state on page 532). It
waits for completion of re-training before attempting to transmit TLPs once
again. The REPLAY_NUM counter is initialized to 00b at reset, or when the
Data Link Layer is inactive. It is also reset whenever an ACK is received, indi-
cating that forward progress is being made in transmitting TLPs.

213

PCI Express System Architecture

REPLAY_TIMER Count

The REPLAY_TIMER is used to measure the time from when a TLP is transmit-
ted until an associated ACK or NAK DLLP is received. The REPLAY_TIMER is
started (or restarted, if already running) when the last Symbol of any TLP is
sent. It restarts from 0 each time that there are outstanding TLPs in the Replay
Buffer and an ACK DLLP is received that references a TLP still in the Replay
Buffer. It resets to 0 and holds when there are no outstanding TLPs in the Replay
Buffer, or until restart conditions are met for each NAK received (except during
a replay), or when the REPLAY_TIMER expires. It is not advanced (i.e., its value
remains fixed) during Link re-training.

ACKD_SEQ Count

This 12-bit register tracks or stores the Sequence Number of the most recently
received ACK or NAK DLLP. It is initialized to all 1s at reset, or when the Data
Link Layer is inactive. This register is updated with the AckNak_Seq Num
[11:0] field of a received ACK or NAK DLLP. The ACKD_SEQ count is com-
pared with the NEXT_TRANSMIT_SEQ count.

IF (NEXT_TRANSMIT_SEQ - ACKD_SEQ) mod 4096 > 2048 THEN

New TLPs from Transaction Layer are not accepted by Data Link Layer until
this equation is no longer true. In addition, a Data Link Layer protocol error
which is a fatal uncorrectable error is reported. This error condition occurs if
there is a separation greater than 2047 between NEXT_TRANSMIT_SEQ and
ACKD_SEQ. i.e, a separation greater than 2047 between the sequence number
of a TLP being transmitted and that of a TLP in the replay buffer that receives an
ACK or NAK DLLP.

Also, the ACKD_SEQ count is used to check for forward progress made in
transmitting TLPs. If no forward progress is made after 3 additional replay
attempts, the Link in re-trained.

DLLP CRC Check

This block checks for CRC errors in DLLPs returned from the receiver. Good
DLLPs are further processed. If a DLLP CRC error is detected, the DLLP is dis-
carded and an error reported. No further action is taken.

Definition: The Data Link Layer is in the inactive state when the Physical Layer
reports that the Link is non-operational or nothing is connected to the Port. The
Physical Layer is in the non-operational state when the Link Training and Status
State Machine (LTSSM) is in the Detect, Polling, Configuration, Disabled, Reset

214

6 QoS/TCs/VCs and
Arbitration

The Previous Chapter

The previous chapter detailed the Ack/Nak Protocol that verifies the delivery
of TLPs between each port as they travel between the requester and completer
devices. This chapter details the hardware retry mechanism that is automati-
cally triggered when a TLP transmission error is detected on a given link.

This Chapter

This chapter discusses Traffic Classes, Virtual Channels, and Arbitration that
support Quality of Service concepts in PCI Express implementations. The con-
cept of Quality of Service in the context of PCI Express is an attempt to predict
the bandwidth and latency associated with the flow of different transaction
streams traversing the PCI Express fabric. The use of QoS is based on applica-
tion-specific software assigning Traffic Class (TC) values to transactions, which
define the priority of each transaction as it travels between the Requester and
Completer devices. Each TC is mapped to a Virtual Channel (VC) that is used to
manage transaction priority via two arbitration schemes called port and VC
arbitration.

The Next Chapter

The next chapter discusses the purposes and detailed operation of the Flow
Control Protocol. This protocol requires each device to implement credit-based
link flow control for each virtual channel on each port. Flow control guarantees
that transmitters will never send Transaction Layer Packets (TLPs) that the
receiver can’t accept. This prevents receive buffer over-runs and eliminates the
need for inefficient disconnects, retries, and wait-states on the link. Flow Con-
trol also helps enable compliance with PCI Express ordering rules by maintain-
ing separate virtual channel Flow Control buffers for three types of transactions:
Posted (P), Non-Posted (NP) and Completions (Cpl).

251

PCI Express System Architecture

Quality of Service

Quality of Service (Qo0S) is a generic term that normally refers to the ability of a
network or other entity (in our case, PCI Express) to provide predictable latency
and bandwidth. QoS is of particular interest when applications require guaran-
teed bus bandwidth at regular intervals, such as audio data. To help deal with
this type of requirement PCI Express defines isochronous transactions that
require a high degree of QoS. However, QoS can apply to any transaction or
series of transactions that must traverse the PCI Express fabric. Note that QoS
can only be supported when the system and device-specific software is PCI
Express aware.

QoS can involve many elements of performance including:

Transmission rate

Effective Bandwidth

Latency

Error rate

Other parameters that affect performance

Several features of PCI Express architecture provide the mechanisms that make
QoS achievable. The PCI Express features that support QoS include:

Traffic Classes (TCs)
Virtual Channels (VCs)
Port Arbitration

Virtual Channel Arbitration
Link Flow Control

PCI Express uses these features to support two general classes of transactions
that can benefit from the PCI Express implementation of QoS.

Isochronous Transactions — from Iso (same) + chronous (time), these transac-
tions require a constant bus bandwidth at regular intervals along with guaran-
teed latency. Isochronous transactions are most often used when a synchronous
connection is required between two devices. For example, a CD-ROM drive
containing a music CD may be sourcing data to speakers. A synchronous con-
nection exists when a headset is plugged directly into the drive. However, when
the audio card is used to deliver the audio information to a set of external
speakers, isochronous transactions may be used to simplify the delivery of the
data.

252

Chapter 6: QoS/TCs/VCs and Arbitration

Asynchronous Transactions — This class of transactions involves a wide vari-
ety of applications that have widely varying requirements for bandwidth and
latency. QoS can provide the more demanding applications (those requiring
higher bandwidth and shorter latencies) with higher priority than the less
demanding applications. In this way, software can establish a hierarchy of traf-
fic classes for transactions that permits differentiation of transaction priority
based on their requirements. The specification refers to this capability as differ-
entiated services.

Isochronous Transaction Support

PCI Express supports QoS and the associated TC, VC, and arbitration mecha-
nisms so that isochronous transactions can be performed. A classic example of a
device that benefits from isochronous transaction support is a video camera
attached to a tape deck. This real-time application requires that image and
audio data be transferred at a constant rate (e.g., 64 frames/second). This type
of application is typically supported via a direct synchronous attachment
between the two devices.

Synchronous Versus Isochronous Transactions

Two devices connected directly perform synchronous transfers. A synchronous
source delivers data directly to the synchronous sink through use of a common
reference clock. In our example, the video camera (synchronous source) sends
audio and video data to the tape deck (synchronous sink), which immediately
stores the data in real time with little or no data buffering, and with only a slight
delay due to signal propagation.

When these devices are connected via PCI Express a synchronous connection is
not possible. Instead, PCI Express emulates synchronous connections through
the use of isochronous transactions and data buffering. In this scenario, isochro-
nous transactions can be used to ensure that a constant amount of data is deliv-
ered at specified intervals (100ps in this example), thus achieving the required
transmission characteristics. Consider the following sequence (Refer to Figure
6-1 on page 254):

1. The synchronous source (video camera and PCI Express interface) accumu-
lates data in Buffer A during service interval 1 (SI 1).

2. The camera delivers the accumulated data to the synchronous sink (tape
deck) sometime during the next service interval (SI 2). The camera also
accumulates the next block of data in Buffer B as the contents of Buffer A is
delivered.

253

PCI Express System Architecture

The tape deck buffers the incoming data (in its Buffer A), which can then be
delivered synchronously for recording on tape during service interval 3.
During SI 3 the camera once again accumulates data into Buffer A, and the

cycle repeats.

Figure 6-1: Example Application of Isochronous Transaction

D Camera

Sl 1 Data accumulated
in Buffer A

Sl 2 Data from Buffer A
delivered &
Next data accumulated
in Buffer B

PCI Express
Interface

SI 3 Data from Buffer B
delivered &
Data accumulated in
Buffer A

r A |
h !

Sl1
Service Interval (SI) =100us

4

Sl2 SI3

= | —]

Sl 2 Data received into
Buffer A

PCI Express

SI 3 Data from Buffer A
Interface

delivered to Tape Deck &
Data received into
Buffer B

viogng |4
g Jayng

Y
Tape Deck

254

Chapter 6: QoS/TCs/VCs and Arbitration

Isochronous Transaction Management

Management of an isochronous communications channel is based on a Traffic
Class (TC) value and an associated Virtual Channel (VC) number that software
assigns during initialization. Hardware components including the Requester of
a transaction and all devices in the path between the requester and completer
are configured to transport the isochronous transactions from link to link via a
hi-priority virtual channel.

The requester initiates isochronous transactions that include a TC value repre-
senting the desired QoS. The Requester injects isochronous packets into the fab-
ric at the required rate (service interval), and all devices in the path between the
Requester and Completer must be configured to support the transport of the
isochronous transactions at the specified interval. Any intermediate device
along the path must convert the TC to the associated VC used to control transac-
tion arbitration. This arbitration results in the desired bandwidth and latency
for transactions with the assigned TC. Note that the TC value remains constant
for a given transaction while the VC number may change from link to link.

Differentiated Services

Various types of asynchronous traffic (all traffic other than isochronous) have
different priority from the system perspective. For example, ethernet traffic
requires higher priority (smaller latencies) than mass storage transactions. PCI
Express software can establish different TC values and associated virtual chan-
nels and can set up the communications paths to ensure different delivery poli-
cies are established as required. Note that the specification does not define
specific methods for identifying delivery requirements or the policies to be used
when setting up differentiated services.

Perspective on QOS/TC/VC and Arbitration

PCI does not include any QoS-related features similar to those defined by PCI
Express. Many questions arise regarding the need for such an elaborate scheme
for managing traffic flow based on QoS and differentiated services. Without
implementing these new features, the bandwidth available with a PCI Express
system is far greater and latencies much shorter than PCI-based implementa-
tions, due primarily to the topology and higher delivery rates. Consequently,
aside from the possible advantage of isochronous transactions, there appears to
be little advantage to implementing systems that support multiple Traffic

255

PCI Express System Architecture

Classes and Virtual Channels.

While this may be true for most desktop PCs, other high-end applications may
benefit significantly from these new features. The PCI Express specification also
opens the door to applications that demand the ability to differentiate and man-
age system traffic based on Traffic Class prioritization.

Traffic Classes and Virtual Channels

During initialization a PCI Express device-driver communicates the levels of
QoS that it desires for its transactions, and the operating system returns TC val-
ues that correspond to the QoS requested. The TC value ultimately determines
the relative priority of a given transaction as it traverses the PCI Express fabric.
Two hardware mechanisms provide guaranteed isochronous bandwidth and
differentiated services:

e Virtual Channel Arbitration
e Port Arbitration

These arbitration mechanisms use VC numbers to manage transaction priority.
System configuration software must assign VC IDs and set up the association
between the traffic class assigned to a transaction and the virtual channel to be
used when traversing each link. This is done via VC configuration registers
mapped within the extended configuration address space. The list of these reg-
isters and their location within configuration space is illustrated in Figure 6-2.

256

7 Flow Control

The Previous Chapter

This previous chapter discussed Traffic Classes, Virtual Channels, and Arbitra-
tion that supports Quality of Service concepts in PCI Express implementations.
The concept of Quality of Service in the context of PCI Express is an attempt to
predict the bandwidth and latency associated with the flow of different transac-
tion streams traversing the PCI Express fabric. The use of QoS is based on appli-
cation-specific software assigning Traffic Class (TC) values to transactions,
which define the priority of each transaction as it travels between the Requester
and Completer devices. Each TC is mapped to a Virtual Channel (VC) that is
used to manage transaction priority via two arbitration schemes called port and
VC arbitration.

This Chapter

This chapter discusses the purposes and detailed operation of the Flow Control
Protocol. This protocol requires each device to implement credit-based link flow
control for each virtual channel on each port. Flow control guarantees that
transmitters will never send Transaction Layer Packets (TLPs) that the receiver
can’t accept. This prevents receive buffer over-runs and eliminates the need for
inefficient disconnects, retries, and wait-states on the link. Flow Control also
helps enable compliance with PCI Express ordering rules by maintaining sepa-
rate virtual channel Flow Control buffers for three types of transactions: Posted
(P), Non-Posted (NP) and Completions (Cpl).

The Next Chapter

The next chapter discusses the ordering requirements for PCI Express devices,
as well as PCI and PCI-X devices that may be attached to a PCI Express fabric.
The discussion describes the Producer/Consumer programming model upon
which the fundamental ordering rules are based. It also describes the potential
performance problems that can emerge when strong ordering is employed,
describes the weak ordering solution, and specifies the rules defined for dead-
lock avoidance.

285

PCI Express System Architecture

Flow Control Concept

The ports at each end of every PCI Express link must implement Flow Control.
Before a transaction packet can be sent across a link to the receiving port, the
transmitting port must verify that the receiving port has sufficient buffer space
to accept the transaction to be sent. In many other architectures including PCI
and PCI-X, transactions are delivered to a target device without knowing if it
can accept the transaction. If the transaction is rejected due to insufficient buffer
space, the transaction is resent (retried) until the transaction completes. This
procedure can severely reduce the efficiency of a bus, by wasting bus band-
width when other transactions are ready to be sent.

Because PCI Express is a point-to-point implementation, the Flow Control
mechanism would be ineffective, if only one transaction stream was pending
transmission across a link. That is, if the receive buffer was temporarily full, the
transmitter would be prevented from sending a subsequent transaction due to
transaction ordering requirements, thereby blocking any further transfers. PCI
Express improves link efficiency by implementing multiple flow-control buffers
for separate transaction streams (virtual channels). Because Flow Control is
managed separately for each virtual channel implemented for a given link, if
the Flow Control buffer for one VC is full, the transmitter can advance to
another VC buffer and send transactions associated with it.

The link Flow Control mechanism uses a credit-based mechanism that allows
the transmitting port to check buffer space availability at the receiving port.
During initialization each receiver reports the size of its receive buffers (in Flow
Control credits) to the port at the opposite end of the link. The receiving port
continues to update the transmitting port regularly by transmitting the number
of credits that have been freed up. This is accomplished via Flow Control
DLLPs.

Flow control logic is located in the transaction layer of the transmitting and
receiving devices. Both transmitter and receiver sides of each device are
involved in flow control. Refer to Figure 7-1 on page 287 during the following
descriptions.

* Devices Report Buffer Space Available — The receiver of each node con-
tains the Flow Control buffers. Each device must report the amount of flow
control buffer space they have available to the device on the opposite end of
the link. Buffer space is reported in units called Flow Control Credits
(FCCs). The number of Flow Control Credits within each buffer is for-
warded from the transaction layer to the transmit side of the link layer as

286

Chapter 7: Flow Control

illustrated in Figure 7-1. The link creates a Flow Control DLLP that carries
this credit information to the receiver at the opposite end of the link. This is
done for each Flow Control Buffer.

* Receiving Credits — Notice that the receiver in Figure 7-1 also receives
Flow Control DLLPs from the device at the opposite end of the link. This
information is transferred to the transaction layer to update the Flow Con-
trol Counters that track the amount of Flow Control Buffer space in the
other device.

* Credit Checks Made — Each transmitter check consults the Flow Control
Counters to check available credits. If sufficient credits are available to
receive the transaction pending delivery then the transaction is forwarded
to the link layer and is ultimately sent to the opposite device. If enough
credits are not available the transaction is temporarily blocked until addi-
tional Flow Control credits are reported by the receiving device.

Figure 7-1: Location of Flow Control Logic

Software Memory, IO, Configuration R/W Requests or Message Requests or Completions
|aye|- (Software layer sends / receives address/transaction type/data/message index)
Transmit Receive

Transaction Layer Packet (TLP Transaction Layer Packet (T4P
Data Payload Data Payload 1! |
Transaction o e A -'
laver i Virtual Channel | — :

y Management

Flow Control
Counters

TLP Replay
Buffer

Data Link

layer Link Packet M -
Sequence] TLP |[LCRCFC Credits|CRC| TLB Erfoe
Check
S Mux

| __Encode | Decode
Physical Packet
Physical Start | Link Packet | End [3t | Link Packet | B3]

layer
Parallel-to-Serial Link Serial-to-Parallel

Port

287

PCI Express System Architecture

Flow Control Buffers

Flow control buffers are implemented for each VC resource supported by a PCI
Express port. Recall that devices at each end of the link may not support the
same number of VC resources, therefore the maximum number of VCs config-
ured and enabled by software is the greatest number of VCs in common
between the two ports.

VC Flow Control Buffer Organization

Each VC Flow Control buffer at the receiver is managed for each category of
transaction flowing through the virtual channel. These categories are:

* Posted Transactions — Memory Writes and Messages

* Non-Posted Transactions — Memory Reads, Configuration Reads and
Writes, and I/O Reads and Writes

¢ Completions — Read Completions and Write Completions

In addition, each of these categories is separated into header and data portions
of each transaction. Flow control operates independently for each of the six
buffers listed below (also see Figure 7-2 on page 289).

e Posted Header
¢ Posted Data

e Non-Posted Header
¢ Non-Posted Data

e Completion Header
¢ Completion Data

Some transactions consist of a header only (e.g., read requests) while others con-
sist of a header and data (e.g., write requests). The transmitter must ensure that
both header and data buffer space is available as required for each transaction
before the transaction can be sent. Note that when a transaction is received into
a VC Flow Control buffer that ordering must be maintained when the transac-
tions are forwarded to software or to an egress port in the case of a switch. The
the receiver must also track the order of header and data components within the
Flow Control buffer.

288

Chapter 7: Flow Control

Figure 7-2: Flow Control Buffer Organization

PCIEX Device
Flow Control Buffers (Receiver) Device Core
e — —_—
— v
I . e e s
(PH) (PD) (NPH) (NPD) (CPLH) (CPLD) PClEX—COre

Hardware/Software
Interface

Transaction Layer

RCV Buffers
PINB|CPL| | PIINB|CPL

Data Link Layer

Physical Layer
4 (RX) (TX)

Flow Control Credits

Buffer space is reported by the receiver in units called Flow Control credits. The
unit value of Flow Control credits (FCCs) may differ between header and data
as listed below:

¢ Header FCCs — maximum header size + digest
o 4 DWs for completions
o 5 DWs for requests

e Data FCCs — 4 DWs (aligned 16 bytes)

Flow control credits are passed within the header of the link layer Flow Control
Packets. Note that DLLPs do not require Flow Control credits because they orig-
inate and terminate at the link layer.

289

PCI Express System Architecture

Maximum Flow Control Buffer Size

The maximum buffer size that can be reported via the Flow Control Initializa-
tion and Update packets for the header and data portions of a transaction are as
follows:

128 Credits for headers

2,560 bytes Request Headers @ 20 bytes/credit
® 2048 bytes for completion headers @ 16 bytes/credit

2048 Credits for data
e 32KB @ 16 bytes/credit

The reason for these limits is discussed in the section entitled “Stage 1 — Flow
Control Following Initialization” page 296, step 2.

Introduction to the Flow Control Mechanism

The specification defines the requirements of the Flow Control mechanism by
describing conceptual registers and counters along with procedures and mecha-
nisms for reporting, tracking, and calculating whether a transaction can be sent.
These elements define the functional requirements; however, the actual imple-
mentation may vary from the conceptual model. This section introduces the
specified model that serves to explain the concept and define the requirements.
The approach taken focuses on a single flow control example for a non-posted
header. The concepts discussed apply to all Flow Control buffer types.

The Flow Control Elements

Figure 7-3 identifies and illustrates the elements used by the transmitter and
receiver when managing flow control. This diagram illustrates transactions
flowing in a single direction across a link, but of course another set of these ele-
ments is used to support transfers in the opposite direction. The primary func-
tion of each element within the transmitting and receiving devices is listed
below. Note that for a single direction these Flow Control elements are dupli-
cated for each Flow Control receive buffer, yielding six sets of elements. This
example deals with non-posted header flow control.

290

Transaction
Ordering

The Previous Chapter

The previous chapter discussed the purposes and detailed operation of the
Flow Control Protocol. This protocol requires each device to implement credit-
based link flow control for each virtual channel on each port. Flow control guar-
antees that transmitters will never send Transaction Layer Packets (TLPs) that
the receiver can’t accept. This prevents receive buffer over-runs and eliminates
the need for inefficient disconnects, retries, and wait-states on the link. Flow
Control also helps enable compliance with PCI Express ordering rules by main-
taining separate Virtual Channel Flow Control buffers for three types of transac-
tions: Posted (P), Non-Posted (NP) and Completions (Cpl).

This Chapter

This chapter discusses the ordering requirements for PCI Express devices as
well as PCI and PCI-X devices that may be attached to a PCI Express fabric. The
discussion describes the Producer/Consumer programming model upon which
the fundamental ordering rules are based. It also describes the potential perfor-
mance problems that can emerge when strong ordering is employed and speci-
fies the rules defined for deadlock avoidance.

The Next Chapter

Native PCI Express devices that require interrupt support must use the Mes-
sage Signaled Interrupt (MSI) mechanism defined originally in the PCI 2.2 spec-
ification. The next chapter details the MSI mechanism and also describes the
legacy support that permits virtualization of the PCI INTx signals required by
devices such as PCI Express-to-PCI Bridges.

315

PCI Express System Architecture

Introduction

As with other protocols, PCI Express imposes ordering rules on transactions
moving through the fabric at the same time. The reasons for the ordering rules
include:

e Ensuring that the completion of transactions is deterministic and in the
sequence intended by the programmer.

* Avoiding deadlocks conditions.

¢ Maintaining compatibility with ordering already used on legacy buses (e.g.,
PCI, PCI-X, and AGP).

¢ Maximize performance and throughput by minimizing read latencies and
managing read/write ordering.

PCI Express ordering is based on the same Producer/Consumer model as PCI.
The split transaction protocol and related ordering rules are fairly straight for-
ward when restricting the discussion to transactions involving only native PCI
Express devices. However, ordering becomes more complex when including
support for the legacy buses mentioned in bullet three above.

Rather than presenting the ordering rules defined by the specification and
attempting to explain the rationale for each rule, this chapter takes the building
block approach. Each major ordering concern is introduced one at a time. The
discussion begins with the most conservative (and safest) approach to ordering,
progresses to a more aggressive approach (to improve performance), and culmi-
nates with the ordering rules presented in the specification. The discussion is
segmented into the following sections:

1. The Producer/Consumer programming model upon which the fundamen-
tal ordering rules are based.

2. The fundamental PCI Express device ordering requirements that ensure the
Producer/Consumer model functions correctly.

3. The Relaxed Ordering feature that permits violation of the Producer/Con-
sumer ordering when the device issuing a request knows that the transac-
tion is not part of a Producer/Consumer programming sequence.

4. Modification of the strong ordering rules to improve performance.

5. Avoiding deadlock conditions and support for PCI legacy implementations.

316

Chapter 8: Transaction Ordering

Producer/Consumer Model

Readers familiar with the Producer/Consumer programming model may
choose to skip this section and proceed directly to “Native PCI Express Order-
ing Rules” on page 318.

The Producer/Consumer model is a common methodology that two requester-
capable devices might use to communicate with each other. Consider the fol-
lowing example scenario:

1.

A network adapter begins to receive a stream of compressed video data
over the network and performs a series of memory write transactions to
deliver the stream of compressed video data into a Data buffer in memory
(in other words the network adapter is the Producer of the data).

After the Producer moves the data to memory, it performs a memory write
transaction to set an indicator (or Flag) in a memory location (or a register)
to indicate that the data is ready for processing.

Another requester (referred to as the Consumer) periodically performs a
memory read from the Flag location to see if there’s any data to be pro-
cessed. In this example, this requester is a video decompressor that will
decompress and display the data.

When it sees that the Flag has been set by the Producer, it performs a mem-
ory write to clear the Flag, followed by a burst memory read transaction to
read the compressed data (it consumes the data; hence the name Con-
sumer) from the Data buffer in memory.

When it is done consuming the Data, the Consumer writes the completion
status into the Status location. It then resumes periodically reading the Flag
location to determine when more data needs to be processed.

In the meantime, the Producer has been reading periodically from the Sta-
tus location to see if data processing has been completed by the other
requester (the Consumer). This location typically contains zero until the
other requester completes the data processing and writes the completion
status into it. When the Producer reads the Status and sees that the Con-
sumer has completed processing the Data, the Producer then performs a
memory write to clear the Status location.

The process then repeats whenever the Producer has more data to be pro-
cessed.

Ordering rules are required to ensure that the Producer/Consumer model
works correctly no matter where the Producer, the Consumer, the Data buffer,
the Flag location, and the Status location are located in the system (in other
words, no matter how they are distributed on various links in the system).

317

PCI Express System Architecture

Native PCl Express Ordering Rules

PCI Express transaction ordering for native devices can be summarized with
four simple rules:

1. PCI Express requires strong ordering of transactions (i.e., performing trans-
actions in the order issued by software) flowing through the fabric that have
the same TC assignment (see item 4 for the exception to this rule). Because
all transactions that have the same TC value assigned to them are mapped
to a given VC, the same rules apply to transactions within each VC.

2. No ordering relationship exists between transactions with different TC
assignments.

3. The ordering rules apply in the same way to all types of transactions: mem-
ory, IO, configuration, and messages.

4. Under limited circumstances, transactions with the Relaxed Ordering
attribute bit set can be ordered ahead of other transactions with the same
TC.

These fundamental rules ensure that transactions always complete in the order
intended by software. However, these rules are extremely conservative and do
not necessarily result in optimum performance. For example, when transactions
from many devices merge within switches, there may be no ordering relation-
ship between transactions from these different devices. In such cases, more
aggressive rules can be applied to improve performance as discussed in “Modi-
fied Ordering Rules Improve Performance” on page 322.

Producer/Consumer Model with Native Devices

Because the Producer/Consumer model depends on strong ordering, when the
following conditions are met native PCI Express devices support this model
without additional ordering rules:

1. All elements associated with the Producer/Consumer model reside within
native PCI Express devices.

2. All transactions associated with the operation of the Producer/Consumer
model transverse only PCI Express links within the same fabric.

3. All associated transactions have the same TC values. If different TC values
are used, then the strong ordering relationship between the transactions is
no longer guaranteed.

4. The Relaxed Ordering (RO) attribute bit of the transactions must be cleared
to avoid reordering the transactions that are part of the Producer/Con-
sumer transaction series.

318

Chapter 8: Transaction Ordering

When PCI legacy devices reside within a PCI Express system, the ordering rules
become more involved. Consequently, additional ordering rules apply because
of PCI's delayed transaction protocol. Without ordering rules, this protocol
could permit Producer/Consumer transactions to complete out of order and
cause the programming model to break.

Relaxed Ordering

PCI Express supports the Relaxed Ordering mechanism introduced by PCI-X;
however, PCI Express introduces some changes (discussed later in this chapter).
The concept of Relaxed Ordering in the PCI Express environment allows
switches in the path between the Requester and Completer to reorder some
transactions just received before others that were previously enqueued.

The ordering rules that exist to support the Producer/Consumer model may
result in transactions being blocked, when in fact the blocked transactions are
completely unrelated to any Producer/Consumer transaction sequence. Conse-
quently, in certain circumstances, a transaction with its Relaxed Ordering (RO)
attribute bit set can be re-ordered ahead of other transactions.

The Relaxed Ordering bit may be set by the device if its device driver has
enabled it to do so (by setting the Enable Relaxed Ordering bit in the Device
Control register—see Table 24 - 3 on page 906). Relaxed ordering gives switches
and the Root Complex permission to move this transaction ahead of others,
whereas the action is normally prohibited.

RO Effects on Memory Writes and Messages

PCI Express Switches and the Root Complex are affected by memory write and
message transactions that have their RO bit set. Memory write and Message
transactions are treated the same in most respects—both are handled as posted
operations, both are received into the same Posted buffer, and both are subject
to the same ordering requirements. When the RO bit is set, switches handle
these transactions as follows:

* Switches are permitted to reorder memory write transactions just posted
ahead of previously posted memory write transactions or message transac-
tions. Similarly, message transactions just posted may be ordered ahead of
previously posted memory write or message transactions. Switches must
also forward the RO bit unmodified. The ability to reorder these transac-
tions within switches is not supported by PCI-X bridges. In PCI-X, all

319

PCI Express System Architecture

posted writes must be forwarded in the exact order received. Another dif-
ference between the PCI-X and PCI Express implementations is that mes-
sage transactions are not defined for PCI-X.

The Root Complex is permitted to order a just-posted write transaction
ahead of another write transaction that was received earlier in time. Also,
when receiving write requests (with RO set), the Root Complex is required
to write the data payload to the specified address location within system
memory, but is permitted to write each byte to memory in any address
order.

RO Effects on Memory Read Transactions

All read transactions in PCI Express are handled as split transactions. When a
device issues a memory read request with the RO bit set, the request may
traverse one or more switches on its journey to the Completer. The Completer
returns the requested read data in a series of one or more split completion trans-
actions, and uses the same RO setting as in the request. Switch behavior for the
example stated above is as follow:

1.

A switch that receives a memory read request with the RO bit set must for-
ward the request in the order received, and must not reorder it ahead of
memory write transactions that were previously posted. This action guar-
antees that all write transactions moving in the direction of the read request
are pushed ahead of the read. Such actions are not necessarily part of the
Producer/Consumer programming sequence, but software may depend on
this flushing action taking place. Also, the RO bit must not be modified by
the switch.

When the Completer receives the memory read request, it fetches the
requested read data and delivers a series of one or more memory read Com-
pletion transactions with the RO bit set (because it was set in the request).
A switch receiving the memory read Completion(s) detects the RO bit set
and knows that it is allowed to order the read Completion(s) ahead of previ-
ously posted memory writes moving in the direction of the Completion. If
the memory write transaction were blocked (due to flow control), then the
memory read Completion would also be blocked if the RO was not set.
Relaxed ordering in this case improves read performance.

Table 8-1 summarizes the relaxed ordering behavior allowed by switches.

320

Interrupts

The Previous Chapter

This chapter discusses the ordering requirements for PCI Express devices as
well as PCI and PCI-X devices that may be attached to a PCI Express fabric. The
discussion describes the Producer/Consumer programming model upon which
the fundamental ordering rules are based. It also describes the potential perfor-
mance problems that can emerge when strong ordering is employed and speci-
fies the rules defined for deadlock avoidance.

This Chapter

Native PCI Express devices that require interrupt support must use the Mes-
sage Signaled Interrupt (MSI) mechanism defined originally in the PCI 2.2 ver-
sion of the specification. This chapter details the MSI mechanism and also
describes the legacy support that permits virtualization of the PCI INTx signals
required by devices such as PCI Express-to-PCI Bridges.

The Next Chapter

To this point it has been presumed that transactions traversing the fabric have
not encountered any errors that cannot be corrected by hardware. The next
chapter discusses both correctable and non-correctable errors and discusses the
mechanisms used to report them. The PCI Express architecture provides a rich
set of error detection, reporting, and logging capabilities. PCI Express error
reporting classifies errors into three classes: correctable, non-fatal, and fatal.
Prior to discussing the PCI Express error reporting capabilities, including PCI-
compatible mechanisms, a brief review of the PCI error handling is included as
background information.

329

PCI Express System Architecture

Two Methods of Interrupt Delivery

Interrupt delivery is conditionally optional for PCI Express devices. When a
native PCI Express function does depend upon delivering interrupts to call its
device driver, Message Signaled Interrupts (MSI) must be used. However, in the
event that a device connecting to a PCI Express link cannot use MSIs (i.e., legacy
devices), an alternate mechanism is defined. Both mechanisms are summarized
below:

Native PCI Express Interrupt Delivery — PCI Express eliminates the need for
sideband signals by using the Message Signaled Interrupt (MSI), first defined
by the 2.2 version of the PCI Specification (as an optional mechanism) and later
required by PCI-X devices. The term “Message Signaled Interrupt” can be mis-
leading in the context of PCI Express because of possible confusion with PCI
Express’s “Message” transactions. A Message Signaled Interrupt is not a PCI
Express Message, instead it is simply a Memory Write transaction. A memory
write associated with an MSI can only be distinguished from other memory
writes by the address locations they target, which are reserved by the system for
Interrupt delivery.

Legacy PCI Interrupt Delivery — This mechanism supports devices that must
use PCI-Compatible interrupt signaling (i.e., INTA#, INTB#, INTC# and
INTD#) defined for the PCI bus. Legacy functions use one of the interrupt lines
to signal an interrupt. An INTx# signal is asserted to request interrupt service
and deasserted when the interrupt service accesses a device-specific register,
thereby indicating the interrupt is being serviced. PCI Express defines in-band
messages that act as virtual INTx# wires, which target the interrupt controller
located typically within the Root Complex.

Figure 9-1 illustrates the delivery of interrupts from three types of devices:

* Native PCI Express device — must use MSI delivery

* Legacy endpoint device — must support MSI and optionally support INTx
messages. Such devices may be boot devices that must use legacy interrupts
during boot, but once its driver loads MSIs are used.

e PCI Express-to-PCI (X) Bridge — must support INTx messages

330

Chapter 9: Interrupts

Figure 9-1: Native PCI Express and Legacy PCI Interrupt Delivery

CPU

Root Complex

Interrupt Controller

Memory

INTA
MSI INTX Assertion
(Memory write) . Message Message

Switch PCI-XP

INTx Message to
9 PCI(X)

Bridge

Endpoint Endpoint

Message Signaled Interrupts

Message Signaled Interrupts (MSIs) are delivered to the Root Complex via
memory write transactions. The MSI Capability register provides all the infor-
mation that the device requires to signal MSIs. This register is set up by configu-
ration software and includes the following information:

¢ Target memory address
* Data Value to be written to the specified address location
* The number of messages that can be encoded into the data

331

PCI Express System Architecture

See “Description of 3DW And 4DW Memory Request Header Fields” on
page 176 for a review of the Memory Write Transaction Header. Note that MSIs
always have a data payload of 1IDW.

The MSI Capability Register Set

A PCI Express function indicates its support for MSI via the MSI Capability reg-
isters. Each native PCI Express function must implement a single MSI register
set within its own configuration space. Note that the PCI Express specification
defines two register formats:

1. 64-bit memory addressing format (Figure 9-2 on page 332) — required by
all native PCI Express devices and optionally implemented by Legacy end-
points.

2. 32-bit memory addressing format (Figure 9-3 on page 332) — optionally
supported by Legacy endpoints.

Figure 9-2: 64-bit MISI Capability Register Format

Figure 9-3: 32-bit MSI Capability Register Set Format

The following sections describe each field within the MSI registers.
Capability ID

The Capability ID that identifies the MSI register set is 05h. This is a hardwired,
read-only value.

332

Chapter 9: Interrupts

Pointer To Next New Capability

The second byte of the register set either points to the next New Capability’s
register set or contains 00h if this is the end of the New Capabilities list. This is a
hardwired, read-only value. If non-zero, it must be a dword-aligned value.

Message Control Register

Figure 9-4 on page 333 and Table 9-1 on page 333 illustrate the layout and usage
of the Message Control register.

Figure 9-4: Message Control Register

Table 9-1: Format and Usage of Message Control Register

Bit(s) Field Name Description
15:8 Reserved Read-Only. Always zero.
7 64-bit Address Read-Only.

Capable ¢ 0 = Function does not implement the upper 32-
bits of the Message Address register and is inca-
pable of generating a 64-bit memory address.

¢ 1 = Function implements the upper 32-bits of the
Message Address register and is capable of gen-
erating a 64-bit memory address.

333

PCI Express System Architecture

Table 9-1: Format and Usage of Message Control Register (Continued)

Bit(s) Field Name Description
6:4 Multiple Message | Read/Write. After system software reads the Mul-
Enable tiple Message Capable field (see next row in this
table) to determine how many messages are
requested by the device, it programs a 3-bit value
into this field indicating the actual number of mes-
sages allocated to the device. The number allocated
can be equal to or less than the number actually
requested. The state of this field after reset is 000b.
The field is encoded as follows:
Value Number of Messages Requested
000b 1
001b 2
010b 4
011b 8
100b 16
101b 32
110b Reserved
111b Reserved
3:1 Multiple Message | Read-Only. System software reads this field to
Capable determine how many messages the device would
like allocated to it. The requested number of mes-
sages is a power of two, therefore a device that
would like three messages must request that four
messages be allocated to it. The field is encoded as
follows:
Value Number of Messages Requested
000b 1
001b 2
010b 4
011b 8
100b 16
101b 32
110b Reserved
111b Reserved

334

1 0 Error Detection
and Handling

The Previous Chapter

Native PCI Express devices that require interrupt support must use the Mes-
sage Signaled Interrupt (MSI) mechanism defined originally in the PCI 2.2 ver-
sion of the specification. The previous chapter detailed the MSI mechanism and
also described the legacy support that permits virtualization of the PCI INTx
signals required by devices such as PCI Express-to-PCI Bridges.

This Chapter

To this point it has been presumed that transactions traversing the fabric have
not encountered any errors that cannot be corrected by hardware. This chapter
discusses both correctable and non-correctable errors and discusses the mecha-
nisms used to report them. The PCI Express architecture provides a rich set of
error detection, reporting, and logging capabilities. PCI Express error reporting
classifies errors into three classes: correctable, non-fatal, and fatal. PCI Express
error reporting capabilities include PCI-compatible mechanisms, thus a brief
review of the PCI error handling is included as background information.

The Next Chapter

The next chapter describes the Logical Physical Layer core logic. It describes
how an outbound packet is processed before clocking the packet out differen-
tially. The chapter also describes how an inbound packet arriving from the Link
is processed and sent to the Data Link Layer. Sub-block functions of the Physical
Layer such as Byte Striping and Un-Striping logic, Scrambler and De-Scrambler,
8b/10b Encoder and Decoder, Elastic Buffers are discussed, and more.

355

PCI Express System Architecture

Background

The original PCI bus implementation provides for basic parity checks on each
transaction as it passes between two devices residing on the same bus. When a
transaction crosses a bridge, the bridge is involved in the parity checks at both
the originating and destination busses. Any error detected is registered by the
device that has detected the error and optionally reported. The PCI architecture
provides a method for reporting the following types of errors:

* data parity errors — reported via the PERR# (Parity Error) signal

¢ data parity errors during multicast transactions (special cycles) — reported
via the SERR# (System Error) signal

¢ address and command parity errors — reported via the SERR# signal

* other types of errors (e.g. device specific) — reported via SERR#

Errors reported via PERR# are considered potentially recoverable, whereas,
errors reported via SERR# are considered unrecoverable. How the errors
reported via PERR# are handled is left up to the implementer. Error handling
may involve only hardware, device-specific software, or system software.
Errors signaled via SERR# are reported to the system and handled by system
software. (See MindShare’s PCI System Architecture book for details.)

PCI-X uses the same error reporting signals as PCI, but defines specific error
handling requirements depending on whether device-specific error handling
software is present. If a device-specific error handler is not present, then all par-
ity errors are reported via SERR#.

PCI-X 2.0 adds limited support for Error Correction Codes (ECC) designed to
automatically detect and correct single-bit errors within the address or data.
(See MindShare’s PCI-X System Architecture book for details.)

Introduction to PCl Express Error Management

PCI Express defines a variety of mechanisms used for checking errors, reporting
those errors and identifying the appropriate hardware and software elements
for handling these errors.

PCI Express Error Checking Mechanisms

PCI Express error checking focuses on errors associated with the PCI Express
interface and the delivery of transactions between the requester and completer
functions. Figure 10-1 on page 357 illustrates the scope of the error checking that

356

Chapter 10: Error Detection and Handling

is the focus of this chapter. Errors within a function that do not pertain to a
given transaction are not reported through the error handling procedures
defined by the PCI Express specification, and it is recommended that such
errors be handled using proprietary methods that are reported via device-spe-
cific interrupts. Each layer of the PCI Express interface includes error checking
capability as described in the following sections.

Figure 10-1: The Scope of PCI Express Error Checking and Reporting

Device A Device B

Device Core Device Core
4L h

PCI-XP Core

PCI-XP

Hardware/Software
Interface

Transaction Layer

Data Link Layer

Physical Layer

Hardware/Software
Interface

Transaction Layer

Data Link Layer

Physical Layer

(Link) T
| A | R
(RX) (} (TX)

A\

Scope of PCI Express
Error Checking and Handling

357

PCI Express System Architecture

Transaction Layer Errors

The transaction layer checks are performed only by the Requestor and Compl-
eter. Packets traversing switches do not perform any transaction layer checks.
Checks performed at the transaction layer include:

ECRC check failure (optional check based on end-to-end CRC)

Malformed TLP (error in packet format)

Completion Time-outs during split transactions

Flow Control Protocol errors (optional)

Unsupported Requests

Data Corruption (reported as a poisoned packet)

Completer Abort (optional)

Unexpected Completion (completion does not match any Request pending
completion)

e Receiver Overflow (optional check)

Data Link Layer Errors

Link layer error checks occur within a device involved in delivering the transac-
tion between the requester and completer functions. This includes the request-
ing device, intermediate switches, and the completing device. Checks
performed at the link layer include:

LCRC check failure for TLPs
Sequence Number check for TLP s
LCRC check failure for DLLPs
Replay Time-out

Replay Number Rollover

Data Link Layer Protocol errors

Physical Layer Errors

Physical layer error checks are also performed by all devices involved in deliv-
ering the transaction, including the requesting device, intermediate switches,
and the completing device. Checks performed at the physical layer include:

* Receiver errors (optional)
¢ Training errors (optional)

358

Chapter 10: Error Detection and Handling

Error Reporting Mechanisms

PCI Express provides three mechanisms for establishing the error reporting pol-
icy. These mechanisms are controlled and reported through configuration regis-
ters mapped into three distinct regions of configuration space. (See Figure 10-2
on page 360.) The various error reporting features are enabled as follows:

PCI-compatible Registers (required) — this error reporting mechanism pro-
vides backward compatibility with existing PCI compatible software and is
enabled via the PCI configuration Command Register. This approach requires
that PCI Express errors be mapped to PCI compatible error registers.

PCI Express Capability Registers (required) — this mechanism is available
only to software that has knowledge of PCI Express. This required error
reporting is enabled via the PCI Express Device Control Register mapped
within PCI-compatible configuration space.

PCI Express Advanced Error Reporting Registers (optional) — this mecha-
nism involves registers mapped into the extended configuration address
space. PCI Express compatible software enables error reporting for individ-
ual errors via the Error Mask Register.

The specification refers to baseline (required) error reporting capabilities and
advanced (optional) error reporting capabilities. The baseline error reporting
mechanisms require access to the PCl-compatible registers and PCI Express
Capability registers (bullets 1 and 2 above), while advanced error reporting
(bullet 3) requires access to the Advanced Error Reporting registers that are
mapped into extended configuration address space as illustrated in Figure 10-2.
This chapter details all error reporting mechanisms.

359

PCI Express System Architecture

Figure 10-2: Location of PCI Express Error-Related Configuration Registers

Required 83
PCIEX Capability Block Space

oL T I P Ao

. Advanced Error Reporting
Optional > Capability Structure

PCIEX Extended Capability
Space

4005d _.

Error Handling Mechanisms

Errors are categorized into three classes that specify the severity of an error as
listed below. Note also the specification defines the entity that should handle
the error based on its severity:

* Correctable errors — handled by hardware
¢ Uncorrectable errors-nonfatal — handled by device-specific software
¢ Uncorrectable errors-fatal — handled by system software

360

11 Physical Layer
Logic

The Previous Chapter

The previous chapter discussed both correctable and non-correctable errors and
the mechanisms used to log and report them. Prior to discussing the PCI
Express error reporting capabilities, a brief review of the PCI error handling was
included as background information.

This Chapter

This chapter describes the Logical characteristics of the Physical Layer core
logic. It describes how an outbound packet is processed before clocking the
packet out differentially. The chapter also describes how an inbound packet
arriving from the Link is processed and sent to the Data Link Layer. The chapter
describes sub-block functions of the Physical Layer such as Byte Striping and
Un-Striping logic, Scrambler and De-Scrambler, 8b/10b Encoder and Decoder,
Elastic Buffers and more.

The Next Chapter

The next chapter describes the electrical characteristics of the Physical Layer. It
describes the analog characteristics of the differential drivers and receivers that
connect a PCI Express device to the Link.

Physical Layer Overview

The Physical Layer shown in Figure 11-1 on page 398 connects to the Link on
one side and interfaces to the Data Link Layer on the other side. The Physical
Layer processes outbound packets before transmission to the Link and pro-
cesses inbound packets received from the Link. The two sections of the Physical
Layer associated with transmission and reception of packets are referred to as
the transmit logic and the receive logic throughout this chapter.

397

PCI Express System Architecture

The transmit logic of the Physical Layer essentially processes packets arriving
from the Data Link Layer, then converts them into a serial bit stream. The bit

stream is clocked out at 2.5 Gbits/s/Lane onto the Link.

The receive logic clocks in a serial bit stream arriving on the Lanes of the Link
with a clock that is recovered from the incoming bit stream. The receive logic
converts the serial bit steam into a parallel symbol stream, processes the incom-
ing symbols, assembles packets and sends them to the Data Link Layer.

Figure 11-1: Physical Layer

Software layer

Transaction layer

Data Link layer

Physical layer

Memory, I/0, Configuration R/W Requests or Message Requests or Completions
(Software layer sends / receives address/transaction type/data/message index)

Transmit Receive

Transaction Layer Packet (TLP) Transaction Layer Packet (TAP)
Header| Data Payload ECRC Data Payload ECRG

_— _—
= I
Transmit =J L— Receive
Buffers I mmm Buffers
per VC Management L per VC

Link Packet DLLPs e.g.
sequence] 1L [Lcreffackmak|crel#ackmpe(crel|sedeee] TP |

TLP Replay N\De-mux A
Buffer
TLP Error
N\ Mux Check
Physical Packet Physical Packe

Start | Link Packet | End kﬂb“

Parallel-to-Serial Link Serial-to-Parallel
Differential Driver Differential Receiver

Port
Link

In the future, data rates per Lane are expected to go to 5 Gbits/s, 10 Gbits/s and
beyond. When this happens, an existing design can be adapted to the higher
data rates by redesigning the Physical Layer while maximizing reuse of the
Data Link Layer, Transaction Layer and Device Core/Software Layer. The Phys-

398

Chapter 11: Physical Layer Logic

ical Layer may be designed as a standalone entity separate from the Data Link
Layer and Transaction Layer. This allows a design to be migrated to higher data
rates or even to an optical implementation if such a Physical Layer is supported
in the future.

Two sub-blocks make up the Physical Layer. These are the logical Physical
Layer and the electrical Physical Layer as shown in Figure 11-2. This chapter
describes the logical sub-block, and the next chapter describes the electrical sub-
block. Both sub-blocks are split into transmit logic and receive logic (indepen-
dent of each other) which allow dual simplex communication.

Figure 11-2: Logical and Electrical Sub-Blocks of the Physical Layer

I 4 I 4

Physical Layer

Tx Rx

Logical

Physical Layer

TX Rx

Logical

TX Rx Tx Rx

Electrical Electrical

Link
N (|:|TX Tx-l TXx+ Rx.‘ Rx+
« ——

A |1

s 1T I
I \/ v

399

PCI Express System Architecture

Disclaimer

To facilitate description of the Physical Layer functionality, an example imple-
mentation is described that is not necessarily the implementation assumed by
the specification nor is a designer compelled to implement a Physical Layer in
such a manner. A designer may implement the Physical Layer in any manner
that is compliant with the functionality expected by the PCI Express specifica-
tion.

Transmit Logic Overview

Figure 11-3 on page 401 shows the elements that make up the transmit logic:

e amultiplexer (mux),

* byte striping logic (only necessary if the link implements more than one
data lane),

e scramblers,

e 8b/10b encoders,

* and parallel-to-serial converters.

TLPs and DLLPs from the Data Link layer are clocked into a Tx (transmit)
Buffer. With the aid of a multiplexer, the Physical Layer frames the TLPs or
DLLPs with Start and End characters. These characters are framing symbols
which the receiver device uses to detect start and end of packet.

The framed packet is sent to the Byte Striping logic which multiplexes the
bytes of the packet onto the Lanes. One byte of the packet is transferred on one
Lane, the next byte on the next Lane and so on for the available Lanes.

The Scrambler uses an algorithm to pseudo-randomly scramble each byte of
the packet. The Start and End framing bytes are not scrambled. Scrambling
eliminates repetitive patterns in the bit stream. Repetitive patterns result in
large amounts of energy concentrated in discrete frequencies which leads to sig-
nificant EMI noise generation. Scrambling spreads energy over a frequency
range, hence minimizing average EMI noise generated.

The scrambled 8-bit characters (8b characters) are encoded into 10-bit symbols
(10b symbols) by the 8b/10b Encoder logic. And yes, there is a 25% loss in trans-
mission performance due to the expansion of each byte into a 10-bit character. A
Character is defined as the 8-bit un-encoded byte of a packet. A Symbol is
defined as the 10-bit encoded equivalent of the 8-bit character. The purpose of

400

Chapter 11: Physical Layer Logic

8b/10b Encoding the packet characters is primarily to create sufficient 1-to-0
and 0-to-1 transition density in the bit stream so that the receiver can re-create a
receive clock with the aid of a receiver Phase Lock Loop (PLL). Note that the
clock used to clock the serial data bit stream out of the transmitter is not itself
transmitted onto the wire. Rather, the receive clock is used to clock in an
inbound packet.

The 10b symbols are converted to a serial bit stream by the Parallel-to-Serial
converter. This logic uses a 2.5 GHz clock to serially clock the packets out on
each Lane. The serial bit stream is sent to the electrical sub-block which differ-
entially transmits the packet onto each Lane of the Link.

Figure 11-3: Physical Layer Details

From Data Link Layer To Data Link Layer

Control Control
Transmit Receive

Throttle 8

Control
START/END/
IDLE/PAD
Code
Control 8 Sl

START /END/IDLE / PAD Character Removal and
Mux Packet Alignment Check

8 DIK#

8 DI/K#

- Byte Un-Stripint =
Lane 0 Byte Smplng Lane N (N=0,1,3,7,11,15,31) Lane 0 yt PINgLane N (N=0,1,3,7,11,15,31)

8 DIK# 8. | DIK#t I i

Scrambler Scrambler De-Scrambler De-Scrambler

8 DIK# 8 DIK#
8 | DIK# 8 DIK#
Tx Local
8b/10b oL 8b/10b Soob Sonoo
Encoder Encoder etec ecoder o Loca] etec ecoder
-PLL
10 Tx Ck 10 | 0

- - Serial-to-Parallel Serial-to-Parallel
Parallel-to-Serial Parallel-to-Serial and Elastic Buffer and Elastic Buffer

Rx Clk Rx Clk

/=N /N

< >
Lane O Lane 1, ..,N-1 Lane N Lane0 Lane 1, ..,N-1 Lane N

401

PCI Express System Architecture

Receive Logic Overview

Figure 11-3 shows the elements that make up the receiver logic:

receive PLL,

serial-to-parallel converter,

elastic buffer,

8b/10b decoder,

de-scrambler,

byte un-striping logic (only necessary if the link implements more than one
data lane),

e control character removal circuit,

* and a packet receive buffer.

As the data bit stream is received, the receiver PLL is synchronized to the clock
frequency with which the packet was clocked out of the remote transmitter
device. The transitions in the incoming serial bit stream are used to re-synchro-
nize the PPL circuitry and maintain bit and symbol lock while generating a
clock recovered from the data bit stream. The serial-to-parallel converter is
clocked by the recovered clock and outputs 10b symbols.

The 10b symbols are clocked into the Elastic Buffer using the recovered clock
associated with the receiver PLL. The Elastic Buffer is used for clock tolerance
compensation; i.e. the Elastic Buffer is used to adjust for minor clock frequency
variation between the recovered clock used to clock the incoming bit stream
into the Elastic Buffer and the locally-generated clock associated that is used to
clock data out of the Elastic Buffer.

The 10b symbols are converted back to 8b characters by the 8b/10b Decoder.
The Start and End characters that frame a packet are eliminated. The 8b/10b
Decoder also looks for errors in the incoming 10b symbols. For example, error
detection logic can check for invalid 10b symbols or detect a missing Start or
End character.

The De-Scrambler reproduces the de-scrambled packet stream from the incom-
ing scrambled packet stream. The De-Scrambler implements the inverse of the
algorithm implemented in the transmitter Scrambler.

The bytes from each Lane are un-striped to form a serial byte stream that is
loaded into the receive buffer to feed to the Data Link layer.

402

12 Eiectricar
Physical Layer

The Previous Chapter

The previous chapter described:

¢ The logical Physical Layer core logic and how an outbound packet is pro-
cessed before clocking the packet out differentially.

¢ How an inbound packet arriving from the Link is processed and sent to the
Data Link Layer.

¢ Sub-block functions of the Physical Layer such as Byte Striping and un-
striping logic, Scrambler and De-Scrambler, 8b/10b Encoder and decoder,
Elastic Buffers and more.

This Chapter

This chapter describes the Physical Layer’s electrical interface to the link. It
describes the analog characteristics of the differential drivers and receivers that
connect a PCI Express device to the Link. Timing and driver/receiver parame-
ters are documented here.

The Next Chapter

The next chapter describes the three types of reset, namely: cold reset, warm
reset and hot reset. It also describes the usage of a side-band reset signal called
PERSTH#. The effect of reset on devices and the system is described.

Electrical Physical Layer Overview

The electrical sub-block associated with each lane (see Figure 12-1 on page 454)
provides the physical interface to the Link. This sub-block contains differential
drivers (transmitters) and differential receivers (receivers). The transmitter seri-
alizes outbound symbols on each Lane and converts the bit stream to electrical

453

PCI Express System Architecture

signals that have an embedded clock. The receiver detects electrical signaling on
each Lane and generates a serial bit stream that it de-serializes into symbols,
and supplies the symbol stream to the logical Physical Layer along with the
clock recovered from the inbound serial bit stream.

In the future, this sub-block could be redesigned to support a cable interface or
an optical (i.e., fiber) interface.

In addition, the electrical Physical Layer contains a Phase Lock Loop (PLL) that
drives the Serializer in the transmitter and a receiver PLL that is sync’d to the
transitions in the incoming serial symbol stream.

Figure 12-1: Electrical Sub-Block of the Physical Layer

I 4 I 4

Physical Layer

TX Rx

Logical

Physical Layer

TX Rx

Logical

TX RXx TX Rx

Electrical Electrical

Link
N (|:|TX Tx-l Tx+ Rx-‘ Rx+
[N} |1 [
11

A | L

s I 11 v
[N} \/ v
CTX

When the Link is in the L0 full-on state, the differential drivers drive the differ-
ential voltage associated with a logical 1 and logical 0 while driving the correct
DC common mode voltage. The receivers sense differential voltages that indi-
cate a logical 1 or 0 and, inaddition, can sense the electrical idle state of the Link.
An eye diagram clearly illustrates the electrical characteristics of a driver and
receiver and addresses signaling voltage levels, skew and jitter issues.

454

Chapter 12: Electrical Physical Layer

The electrical Physical Layer is responsible for placing the differential drivers,
differential receivers, and the Link in the correct state when the Link is placed in
a low power state such as LOs, L1, or L2. While in the L2 low power state, a
device can signal a wake-up event upstream via a Beacon signaling mechanism.

The differential drivers support signal de-emphasis (or pre-emphasis; see “De-
Emphasis (or Pre-Emphasis)” on page 466) to help reduce the bit error rate
(BER)—especially on a lossy Link.

The drivers and receivers are short-circuit tolerant, making them ideally suited
for hot insertion and removal events. The Link connecting two devices is AC
coupled. A capacitor at the transmitter side of the Link DC de-couples it from
the receiver. As a result, two devices at opposite ends of a Link can have their
own ground and power planes. See Figure 12-1 on page 454 for the capacitor
(Crx) placement on the Link.

High Speed Electrical Signaling

Refer to Figure 12-2. High-speed LVDS (Low-Voltage Differential Signaling)
electrical signaling is used in driver and receiver implementations. Drivers and
receivers from different manufacturers must be inter-operable and may be
designed to be hot-pluggable. A standard FR4 board can be used to route the
Link wires. The following sections describe the electrical characteristics of the
driver, receiver, and the Link represented in the Figure.

Figure 12-2: Differential Transmitter/Receiver

Detect

Lane in

_one Receiver
direction

Clock
Source

Clock
Vixem=0-3.6V Source

Z1y = Zpy = 50 Ohms
- Cyx = 75— 200 nF

455

PCI Express System Architecture

Clock Requirements

General

The transmitter clocks data out at 2.5Gbits/s. The clock used to do so must be
accurate to +/- 300 ppm of the center frequency. It is allowed to skew a maxi-
mum of 1 clock every 1666 clocks. The two devices at the opposite ends of a
Link could have their transmit clocks out of phase by as much as 600 ppm.

A device may derive its clock from an external clock source. The system board
supplies a 100 MHz clock that is made available to devices on the system board
as well as to add-in cards via the connector. With the aid of PLLs, a device may
generate its required clocks from this 100 MHz clock.

Spread Spectrum Clocking (SSC)

Spread spectrum clocking is a technique used to modulate the clock frequency
slowly so as to reduce EMI radiated noise at the center frequency of the clock.
With SSC, the radiated energy does not produce a noise spike at 2.5GHz
because the radiated energy is spread over a small frequency range around
2.5GHz.

SCC is not required by the specification. However, if supported, the following
rules apply:

e The clock can be modulated by +0% to -0.5% from nominal a frequency of
2.5GHz.

¢ The modulation rate must be between 30KHz and 33KHz.

e The +/- 300 ppm requirement for clock frequency accuracy still holds. Fur-
ther, the maximum of 600 ppm frequency variation between the two
devices at opposite ends of a Link also remains true. This almost certainly
imposes a requirement that the two devices at opposite ends of the Link be
driven from the same clock source when the clock is modulated with SSC.

Impedance and Termination

The characteristic impedance of the Link is 100 Ohms differential (nominal),
while single-ended DC common mode impedance is 50 Ohms. This impedance
is matched to the transmitter and receiver impedances.

456

Chapter 12: Electrical Physical Layer

Transmitter Impedance Requirements

Transmitters must meet the Z1y_ppp.pc (see Table 12-1 on page 477) parameters
anytime differential signals are transmitted during the full-on LO power state.

When a differential signal is not driven (e.g., in the lower power states), the
transmitter may keep its output impedance at a minimum Zry_pc (see Table 12-
1 on page 477) of 40 Ohms, but may also place the driver in a high impedance
state. Placing a driver in the high impedance state may be helpful while in LOs
or L1 low power states to help reduce power drain in these states.

Receiver Impedance Requirements

The receiver is required to meet the Zry pipr.pc (see Table 12-2 on page 480)
parameter of 100 Ohms anytime differential signals are transmitted during the
full-on LO power state, as well as in all other lower power states wherein ade-
quate power is provided to the device. A receiver is excluded from this imped-
ance requirement when the device is powered down (e.g., in the L2 and L3
power states and during Fundamental Reset).

When a receiver is powered down to the L2 or L3 state, or during Fundamental
Reset, its receiver goes to the high impedance state and must meet the Zgy.
HIGH-IMP-Dc parameter of 200 KOhms minimum (see Table 12-2 on page 480).

DC Common Mode Voltages

Transmitter DC Common Mode Voltage

Once driven after power-on and during the Detect state of Link training, the
transmitter DC common mode voltage V1x_pc.cnm (see Table 12-1 on page 477)
must remain at the same voltage. The common mode voltage is turned off only
when the transmitter is placed in the L2 or L3 low power state, during which
main power to the device is removed. A designer can choose any common
mode voltage in the range of 0V to 3.6V.

Receiver DC Common Mode Voltage

The receiver is DC de-coupled from the transmitter by a capacitor. This allows
the receiver to have its own DC common mode voltage. This voltage is specified
at OV. The specification is unclear about the meaning of this 0V receiver DC
common mode voltage requirement and does not require the common mode
voltage to be OV at the input to the receiver differential amplifier. Rather, a sim-
ple bias voltage network allows the receiver to operate at optimal common
mode. See Figure 12-3 on page 458.

457

PCI Express System Architecture

Figure 12-3: Receiver DC Common Mode Voltage Requirement

Detect

: Bi - .
Small g : Ratio of resistors
5‘| sets DC common
Big mode voltage
- Big
Small
Big
CT>(

Lane in

_one Receiver
direction

Clock
Source

Clock

Ve =0-3.6V - Source

Z.x = Zgy =50 Ohms
Cyy = 75-200 nF

ESD and Short Circuit Requirements

All signals and power pins must withstand (without damage) a 2000V Electro-
Static Discharge (ESD) using the human body model and 500V using the
charged device model. For more details on this topic, see the JEDEC JESE22-
A114-A specification.

The ESD requirement not only protects against electro-static damage, but facili-
tates support of surprise hot insertion and removal events. Transmitters and
receivers are also required to be short-circuit tolerant. They must be able to
withstand sustained short-circuit currents (on D+ or D- to ground) of Ity _ggoRrT
(see Table 12-2 on page 480) in the order of 90mA (the maximum current a
transmitter is required to provide).

458

13 System Reset

The Previous Chapter

The previous chapter describes the Electrical Physical Layer. It describes the
analog characteristics of the differential drivers and receivers that connect a PCI
Express device to the Link. Timing and driver/receiver parameters are docu-
mented in that chapter.

This Chapter

This chapter describes 3 types of system reset generation capabilities: cold reset,
warm reset and hot reset. The chapter also describes the usage of a side-band
reset signal called PERST#. It describes the usage of the TS1 Ordered-Set to gen-
erate an in-band Hot Reset. The effect of reset on a device and system is
described.

The Next Chapter

The next chapter describes the function of the Link Training and Status State
Machine (LTSSM) of the Physical Layer. The chapter describes the initialization
process of the Link from Power-On or Reset, until the full-on LO state, where
traffic on the Link can begin. In addition, the chapter describes the lower power
management states LOs, L1, L2, L3 and briefly describes entry and exit proce-
dure to/from these states.

Two Categories of System Reset

The PCI Express specification describes two reset generation mechanisms. The
first mechanism is a system generated reset referred to as Fundamental Reset.
The second mechanism is an In-band Reset (communicated downstream via the
Link from one device to another) referred to as the Hot Reset.

487

PCI Express System Architecture

Fundamental Reset

Fundamental Reset causes a device’s state machines, hardware logic, port states
and configuration registers (except sticky registers of a device that can draw
valid V,,) to initialize to their default conditions.

There are two types of Fundamental Reset:

Cold Reset. This is a reset generated as a result of application of main
power to the system.

Warm Reset. Triggered by hardware without the removal and re-applica-
tion of main power. A Warm Reset could be triggered due to toggling of the
system ‘POWERGOQOD’ signal with the system power stable. The mecha-
nism for generating a Warm Reset is not defined by specification. It is up to
the system designer to optionally provide a mechanism to generate a Warm
Reset.

When Fundamental Reset is asserted:

The receiver terminations are required to meet the Zgy_yigH-mvp-DC param-
eter of 200 kOhms minimum (see Table 12-2 on page 480).

The transmitter terminations are required to meet the output impedance at
minimum Zry_pc (see Table 12-1 on page 477) of 40 Ohms, but may place
the driver in a high impedance state.

The transmitter holds a constant DC common mode voltage between 0 V
and 3.6 V.

After Fundamental Reset Exit:

The receiver must re-enable its receiver terminations Zgyx_prp.pc (see

Table 12-2 on page 480) of 100 Ohms within 5 ms of Fundamental Reset exit.
The receiver is now ready to detect electrical signaling on the Link.

After Fundamental Reset exit, the Link Training state machine enters the
‘Detect’ state and the transmitter is ready to detect the presence of a receiver
at the other end of the Link.

The transmitter holds a constant DC common mode voltage between 0 V
and 3.6 V.

488

Chapter 13: System Reset

Methods of Signhaling Fundamental Reset

Fundamental Reset may be signaled via an auxiliary side-band signal called
PERST# (PCI Express Reset, asserted low). When PERST# is not provided to an
add-in card or component, Fundamental Reset is generated autonomously by
the component or add-in card.

Below is a description of the two mechanisms of Fundamental Reset generation.

PERST# Type Fundamental Reset Generation. A central resource
device, e.g. a chipset, in the PCI Express system provides this source of reset.
For example, the 10 Controller Hub (ICH) chip in Figure 13-1 on page 490 may
generate PERST#. The system power supply (not shown in figure) generates a
"POWERGOOD’ signal once main power is turned on and stable. The ICH Reset
logic in-turn uses this signal to assert PERST# when POWERGOOD (asserted
High) is deasserted. If power is cycled, POWERGOOD toggles and causes
PERSTH# to assert and deassert. This is the Cold Reset. If the system provides a
method of toggling POWERGOOD without cycling through power (as via a
button on the chassis) then also PERST# asserts and deasserts. This is the Warm
Reset.

The PERST# signal feeds all PCI Express devices on the motherboard including
the connectors and graphics controller. Devices may choose to use PERST# but
are not required to use it as the source of reset.

The PERST# signal also feeds the PCI Express-to-PCI-X bridge shown in the fig-
ure. The bridge forwards this reset to the PCI-X bus as PCI-X bus RST#. ICH
also generates PRST# for the PCI bus.

Autonomous Method of Fundamental Reset Generation. A device
can be designed to generate its own Fundamental Reset upon detection of
application (or re-application) of main power. The specification does not
describe the mechanism for doing so. The self reset generation mechanism can
be built into the device or may be designed as external logic, for example, on a
add-in card that detects Power-On and generates a local reset to the device.

The device must also generate an autonomous Fundamental Reset if it detects
its power go outside of the limits specified.

A device should support the autonomous method of triggering a Fundamental
Reset given that the specification is not clear about requirement of system
PERST# support.

489

PCI Express System Architecture

Figure 13-1: PERST# Generation

Processor
FSB
[
ROO omple
i DDR
PCI Express SDRAM
GFX PCI Express
POWERGOOD PRST# L pC
O Controlle D
IEEE
PERST# 1394

3 PCI Express
Link

-[H]‘ PCI-X

Gigabit
Ethernet

490

Chapter 13: System Reset

In-Band Reset or Hot Reset

Hot Reset is propagated in-band via the transmission of TS1 Ordered-Sets
(shown in Figure 13-2) with bit 0 of symbol 5 in the TS1 Ordered-Set asserted.
The TS1 Ordered-Set is transmitted on all Lanes with the correct Link # and
Lane# symbols. These TS1 Ordered-Sets are continuously transmitted for 2 ms.
Both transmitter and receiver of Hot Reset end up in the detect state (see “Hot
Reset State” on page 544). Hot Reset, in general, is a software generated reset.

Figure 13-2: TS1 Ordered-Set Showing the Hot Reset Bit

13
14
15

oo] — K285 Training Control
Link # | == D0.0-D31.7, K23.7 (0-255) Bit 0 | 0 = De-assert Hot Reset
Lane # | —» D0.0-D31.0, K23.7 (0-31) 1 = Assert Hot Reset
FTS | ==mp # 0f FTSs required by receiver to - - -
Rate ID obtain bit and symbol lock Bit1 | 0= De-assert Disable Link
T rain Gt D2.0 = 2.5 Ghitls 1 = Assert Disable Link
Bit2 | 0= De-assert Loopback
TS 1D |—> D102f0r TS1 1 = Assert Loopback
Bit 3 | 0 = De-assert Disable Scrambling
1 = Assert Disable Scrambling
TS ID_| == D10.2 for TS1 -
TS ID | —> D10.2 for TSL Bit4:7 | Reserved

Hot Reset is propagated downstream. Hot Reset is not propagated upstream.
This means that only the Root Complex and Switches are able to generate Hot
Reset. Endpoints do not generate Hot Reset. A switch that receives a Hot Reset
TS1 Ordered-Set on its upstream port must pass it to all its downstream ports.
In addition, the switch resets itself. All devices downstream of a switch that
receive the Hot Reset TS1 Ordered-Set will reset themselves.

Response to Receiving a Hot Reset Command
When a device receives a Hot Reset command:

e It goes to the ‘Detect’ Link State (via the Recovery and Hot Reset state) of
the Link Training state machine and starts the Link training process, fol-
lowed by initialization of VCO.

e Its state machines, hardware logic, port states and configuration registers
(except sticky registers) initialize to their default conditions.

491

PCI Express System Architecture

Switches Generate Hot Reset on Their Downstream Ports

The following are a list of bullets that indicate when a switch generates a Hot
Reset on ALL its downstream ports:

e Switch receives a Hot Reset on its upstream port

e The Data Link Layer of the switch upstream port reports a DL_Down state.
This state occurs when the upstream port has been disconnected or when
the upstream port has lost connection with an upstream device due to an
error that is not recoverable by the Physical Layer and Data Link Layer.

e Software sets the ‘Secondary Bus Reset’ bit of the Bridge Control configura-
tion register associated with the upstream port.

Bridges Forward Hot Reset to the Secondary Bus

If a bridge such as a PCI Express-to-PCI(-X) bridge detects a Hot Reset on its
upstream port, it must assert the PRST# signal on its secondary PCI(-X) bus.

How Does Software Tell a Device (e.g. Switch or Root Com-
plex) to Generate Hot Reset?

Software tells a root complex or switch to generate a Hot Reset on a specific port
by writing a 1 followed by 0 to the ‘Secondary Bus Reset’ bit in the Bridge Con-
trol register of that associated port’s configuration header. See Figure 13-3 on
page 493 for the location of this bit. Consider the example shown in Figure 13-4
on page 494. Software writes a 1 to the ‘Secondary Bus Reset” register of Switch
A’s downstream left side port. Switch A generates a Hot Reset on that port by
forwarding TS1 Ordered-Sets with the Hot Reset bit set. Switch A does not gen-
erate a Hot Reset on its right side port. Switch B receives this Hot Reset on its
upstream port and forwards it on all downstream ports to the two endpoints.

If software writes to the ‘Secondary Bus Reset’ bit of the switch’s upstream port,
then the switch generates a Hot Reset on ALL its downstream ports. Consider
the example shown in Figure 13-5 on page 495. Software writes a 1 to the ‘Sec-
ondary Bus Reset’ register of Switch C’s upstream port. Switch C generates a
Hot Reset on ALL downstream ports by forwarding TS1 Ordered-Sets with the
Hot Reset bit set on both ports. The PCI Express-to-PCI bridge receives this Hot
Reset and forwards it on to the PCI bus by asserting PRST#.

A device is in the L0 state when the ‘Secondary Bus Reset’ bit is set. The device
(upstream device) then goes through the Recovery state of the LTSSM (see
“Recovery State” on page 532) before it generates the TS1 Ordered-Sets with the
Hot Reset bit set and then enters the Hot Reset state (see “Hot Reset State” on

492

14 Link Initialization
& Training

The Previous Chapter

The previous chapter described three types of system reset generation capabili-
ties: cold reset, warm reset and hot reset. The chapter also described the usage
of the side-band reset signal PERST#. The effect of reset on a device and system
was described.

This Chapter

This chapter describes the function of the Link Training and Status State
Machine (LTSSM) of the Physical Layer. The chapter describes the initialization
process of the Link from Power-On or Reset, until the full-on L0 state, where
traffic on the Link can begin. In addition, the chapter describes the lower power
management states LOs, L1, L2, L3 and briefly describes entry and exit proce-
dure to/from these states.

The Next Chapter

The next chapter describes the mechanical form factor for the PCI Express con-
nector and add-in card. Different slot form factors are defined to support x1, x4,
x8 and x16 Lane widths. In addition, the next chapter describes the Mini PCI
Express form factor which targets the mobile market, Server IO Module (SIOM)
form factor which targets the workstation and server market, and the NEW-
CARD form factor which targets both mobile and desktop markets.

499

PCI Express System Architecture

Link Initialization and Training Overview

General

Link initialization and training is a Physical Layer control process that config-
ures and initializes a device’s Physical Layer, port, and associated Link so that
normal packet traffic can proceed on the Link. This process is automatically ini-
tiated after reset without any software involvement. A sub-set of the Link train-
ing and initialization process, referred to as Link re-training, is initiated
automatically as a result of a wakeup event from a low power mode, or due to
an error condition that renders the Link inoperable. The Link Training and Sta-
tus State Machine (LTSSM) is the Physical Layer sub-block responsible for the
Link training and initialization process (see Figure 14-1).X

A receiver may optionally check for violations of the Link training and initial-
ization protocol. If such an error occurs, it may be reported as a ‘Link Training
Error’ to the error reporting logic (see “Link Errors” on page 379).

The following are configured during the Link training and initialization pro-
cess:

e Link Width is established and set. Two devices with a different number of
port Lanes may be connected. For example, one device with a x2 port may
be connected to a device with a x4 port. During Link training and initializa-
tion, the Physical Layer of both devices determines and sets the Link width
to the minimum Lane width of the two (i.e.,, x2). Other Link negotiated
behaviors include Lane reversal, splitting of ports into multiple Links, and
the configuration of a cross-Link.

* Lane Reversal on a multi-Lane device’s port (if reversal is required). The
Lanes on a device’s port are numbered by design. When wiring up a Link to
connect two devices, a board designer should match up the lane numbers of
each device’s port so that Lane 0 of one device’s port connects to Lane 0 of
the remote device’s port, Lane n to Lane # of the remote device’s port, and
SO On.

500

Chapter 14: Link Initialization & Training

Figure 14-1: Link Training and Status State Machine Location

Memory, 1/O, Configuration R/W Requests or Message Requests or Completions

(Software layer sends / receives address/transaction type/data/message index)
Software layer

Transmit Receive

Transaction Layer Packet (TLP) Transaction Layer Packet (TAP)
Header Data Payload ECRC Header Data Payload

Transaction layer —
—

Transmit ! - I mmmm Receive

Buffers V’l\;tual Chann:al — Buffers

per VC anagemen per VC

Link Packet DLLPs e.g. jnk Packet
sequence| TLP [Lorc]|ackinak|cref#fack(cref{sepedee] TP [DRC

Data Link layer
y TLP Replay N\De-muxA
Buffer
TLP Error,
N\ Mux Check
Physical Packet | PhysNgl Packes, |
Start | Link Packet | End mr Mm

Physical layer

Parallel-to-Serial Link Serial-to-Parallel

) - - Training B -)
Differential Driver (LTSSM) Differential Receiver

Due to the way the Lanes are organized on the pins of the device’s package,
it may not be possible to match up the Lanes of the two devices without
crisscrossing the wires (see Figure 14-2 on page 502). Crisscrossed wires
will introduce interference into the Link. If however, one or both of the
devices support Lane Reversal, the designer could wire the Lanes in paral-
lel fashion. During the Link training and initialization process, one device
reverses the Lane numbering so the Lane numbers of the two ports would
match up (Figure 14-2 on page 502). Unfortunately, the specification does
not require devices to support the Lane Reversal feature. Hence, the

501

PCI Express System Architecture

designer must verify that at least one of the two devices connected via a
Link supports this feature before wiring the Lanes of the two ports in
reverse order. If the device supports this feature, the Lane Reversal process
may permit a multi-Lane Link to be split into multiple Links that connect to
multiple devices. More on this feature later.

Figure 14-2: Example Showing Lane Reversal

Example 1 Example 2
Neither device A nor B Device B

supports Lane Reversal

Device A
(Upstream Device)

0123 0123

VWV

7\

3210 3210

Device B
(Downstream Device)

Board designer has to crisscross
Lanes to wire Link correctly. Link
introduces signal interference

supports Lane Reversal

Device A
(Upstream Device)

0123 0123

After Lane
1 2 3 1] 2| 3] «—Reversal

3210 3210 Before Lane

Device B Reversal
(Downstream Device)

Board designer can wire Link with
parallel wires. Lane Reversal reverses
order of B's Lane numbers so that Lane
Numbers now match up

e Polarity Inversion may be necessary. The D+ and D- differential pair termi-

nals for two devices may not be connected correctly, or may be intentionally
reversed so that the signals do not crisscross when wiring the Link. If Lanes
are wired with D+ and D- of one device wired to D- and D+ of the remote
device, respectively, the Polarity Inversion feature reverses the D+ and D-
signal polarities of the receiver differential terminal. Figure 14-3 illustrates
the benefit of this feature on a x1 Link. Support for Polarity Inversion is
mandatory.

502

Chapter 14: Link Initialization & Training

Figure 14-3: Example Showing Polarity Inversion

Before and After Polarity Inversion

Device A
(Upstream Device)

After Polarity

Before Polarity

Device B Inversion
(Downstream Device)

Link Data Rate. Link initialization and training is completed at the default
2.5Gbit/s Generation 1 data rate. In the future, Generation 2 PCI Express
will support higher data rates of 5Gbit/s and 10Gbit/s. During training,
each node advertises its highest data rate capability. The Link is then initial-
ized with the highest common frequency that both neighbors can support.
Bit Lock. Before Link training begins, the receiver PLL is not yet sync’d
with the remote transmitter’s transmit clock, and the receiver is unable to
differentiate between one received bit and another. During Link training,
the receiver PLL is sync’d to the transmit clock and the receiver is then able
to shift in the received serial bit stream. See “Achieving Bit Lock” on
page 440.

Symbol Lock. Before training, the receiver has no way of discerning the
boundary between two, 10-bit sympols. During training, when TS1 and TS2
Ordered-Sets are exchanged, the receiver is able to locate the COM symbol
(using its unique encoding) and uses it to initialize the deserializer. See
“Symbol Boundary Sensing (Symbol Lock)” on page 441.

Lane-to-Lane De-skew. Due to Link wire length variations and the different
driver/receiver characteristics on a multi-Lane Link, each of the parallel bit
streams that represent a packet are transmitted simultaneously, but they do
not arrive at the receivers on each lane at the same time. The receiver circuit
must compensate for this skew by adding or removing delays on each Lane
so that the receiver can receive and align the serial bit streams of the packet
(see “Lane-to-Lane De-Skew” on page 444). This deskew feature combined
with the Polarity Inversion and Lane Reversal features, greatly simplifies

503

PCI Express System Architecture

the designer’s task of wiring up the high speed Link.

Ordered-Sets Used During Link Training and Initialization

Physical Layer Packets (PLPs), referred to as Ordered-Sets, are exchanged
between neighboring devices during the Link training and initialization pro-
cess. These packets were briefly described in the section on “Ordered-Sets” on
page 433. The five Ordered-Sets are:

Training Sequence 1 and 2 (TS1 and TS2),
Electrical Idle,

Fast Training Sequence (FTS), and

Skip (SKIP) Ordered-Sets.

Their character structure is summarized in Figure 14-4 on page 504.

Figure 14-4: Five Ordered-Sets Used in the Link Training and Initialization Process

OO U A WNPEFEO

13
14
15

TS10rTS2
Training Control
SO/l —> K285 , —
Link # | —» D0.0-D31.7, K23.7 (0-255) Bit0 | 0) De-assert Hot Reset
Lane #|—» D0.0-D31.0, K23.7 (0-31) 1 = Assert Hot Reset
N FTS Number of FTSs required by receiver ; — _ ; R
Rate ID - to obtain bit and symbol lock Bit1 | 0=De-assert Disable Link
A€ 1= D2.0=2.5 Gbitls 1 = Assert Disable Link
Train Ctl >
Bit2 | 0= De-assert Loopback
1S |D | —> D10.2f0r TS1, D52 f0r TS2 1 = Assert Loopback
Bit3 [0 = De-assert Disable Scrambling
1 = Assert Disable Scrambling
TS ID | == D10.2 for TS1, D5.2 for TS2 ——
TS ID | —» D10.2 for TS1, D5.2 for TS2 Bit 47 | Reserved
Electrical IDLE FTS SKIP
ole]Yll —> K285 ooVl — K285 ol0]Yll — K285
IDL |=> K283 FTS |—> K28.1 SKP |=> K28.0
IDL |= K28.3 FTS |= K28.1 SKP | K28.0
IDL |=> K28.3 FTS |= K28.1 SKP | K28.0

504

15 prower Budgeting

The Previous Chapter

The previous chapter described the function of the Link Training and Status
State Machine (LTSSM) of the Physical Layer. It also described the initialization
process of the Link from Power-On or Reset, until the full-on L0 state, where
traffic on the Link can begin. In addition, the chapter described the lower power
management states LOs, L1, L2, L3 and briefly discusses entry and exit proce-
dure to/from these states.

This Chapter

This chapter describes the mechanisms that software can use to determine
whether the system can support an add-in card based on the amount of power
and cooling capacity it requires.

The Next Chapter

The next chapter provides a detailed description of PCI Express power manage-
ment, which is compatible with revision 1.1 of the PCI Bus PM Interface Specifica-
tion and the Advanced Configuration and Power Interface, revision 2.0 (ACPI). In
addition PCI Express defines extensions that are orthogonal to the PCI-PM
specification. These extensions focus primarily on Link Power and PM event
management. This chapter also provides an overall context for the discussion of
power management, by including a description of the OnNow Initiative, ACP]I,
and the involvement of the Windows OS is also provided.

Introduction to Power Budgeting

The primary goal of the PCI Express power budgeting capability is to allocate
power for PCI Express hot plug devices, which can be added to the system dur-
ing runtime. This capability ensures that the system can allocate the proper
amount of power and cooling for these devices.

557

PCI Express System Architecture

The specification states that “power budgeting capability is optional for PCI
Express devices implemented in a form factor which does not require hot plug,
or that are integrated on the system board.” None of the form factor specifica-
tions released at the time of this writing required support for hot plug and did
not require the power budgeting capability. However, form factor specifications
under development will require hot plug support and may also require power
budgeting capability.

System power budgeting is always required to support all system board devices
and add-in cards. The new power budgeting capability provides mechanisms
for managing the budgeting process. Each form factor specification defines the
minimum and maximum power for a given expansion slot. For example, the
Electromechanical specification limits the amount of power an expansion card
can consume prior to and during configuration, but after a card is configured
and enabled, it can consume the maximum amount of power specified for the
slot. Chapter 18, entitled "Add-in Cards and Connectors," on page 685. Conse-
quently, in the absence of the power budgeting capability registers, the system
designer is responsible for guaranteeing that power has been budgeted cor-
rectly and that sufficient cooling is available to support any compliant card
installed into the connector.

The specification defines the configuration registers that are designed to sup-
port the power budgeting process, but does not define the power budgeting
methods and processes. The next section describes the hardware and software
elements that would be involved in power budgeting, including the specified
configuration registers.

The Power Budgeting Elements

Figure 15-2 illustrates the concept of Power Budgeting for hot plug cards. The
role of each element involved in the power budgeting, allocation, and reporting
process is listed and described below:

System Firmware Power Management (used during boot time)
Power Budget Manager (used during run time)

Expansion Ports (ports to which card slots are attached)
Add-in Devices (Power Budget Capable)

System Firmware — System firmware, having knowledge of the system design,
is responsible for reporting system power information. The specification recom-
mends the following power information be reported to the PCI Express power
budget manager, which allocates and verifies power consumption and dissipa-

558

Chapter 15: Power Budgeting

tion during runtime:

e Total system power available.
e Power allocated to system devices by firmware
e Number and type of slots in the system.

Firmware may also allocate power to PCI Express devices that support the
power budgeting capability configuration register set (e.g., a hot-plug device
used during boot time). The Power Budgeting Capability register (see Figure
15-1) contains a System Allocated bit that is intended to be set by firmware to
notify the power budget manager that power for this device has been included
in the system power allocation. Note that the power manager must read and
save power information for hot-plug devices that are allocated by the system, in
case they are removed during runtime.

Figure 15-1: System Allocated Bit

The Power Manager — The power manager initializes when the OS installs, at
which time it receives power-budget information from system firmware. The
specification does not define the method for communicating this information.

The power budget manager is responsible for allocating power for all PCI
Express devices. This allocation includes:

e PCI Express devices that have not already been allocated by the system
(includes embedded devices that support power budgeting).

* Hot-plugged devices installed at boot time.

¢ New devices added during runtime.

559

PCI Express System Architecture

Expansion Ports — Figure 15-2 on page 561 illustrates a hot plug port that must
have the Slot Power Limit and Slot Power Scale fields within the Slot Capabili-
ties register implemented. The firmware or power budget manager must load
these fields with a value that represents the maximum amount of power sup-
ported by this port. When software writes to these fields the port delivers the
Set_Slot_Power_Limit message to the device. These fields are also written when
software configures a card that has been added during a hot plug installation.

The PCI Express specification requires that:

¢ Any downstream port of a Switch or a Root Complex that has a slot
attached (i.e., the Slot Implemented bit within its PCI Express Capabilities
register is set) must implement the Slot Capabilities register.

* Software must initialize the Slot Power Limit Value and Scale fields of the
Slot Capabilities register of the Switch or Root Complex Downstream Port
that is connected to an add-in slot.

* The Upstream Port of an Endpoint, Switch, or a PCI Express-PCI Bridge
must implement the Device Capabilities register.

* When a card is installed in a slot, and software updates the power limit and
scale values in the Downstream port of the Switch or Root Complex, that
port will automatically transmit the Set_Slot_Power_Limit message to the
Upstream Port of the Endpoint, Switch, or a PCI Express-PCI Bridge on the
installed card.

* The recipient of the Message must use the value in the Message data pay-
load to limit usage of the power for the entire card/module, unless the
card/module will never exceed the lowest value specified in the corre-
sponding electromechanical specification.

Add-in Devices—Expansion cards that support the power budgeting capability
must include the:

e Slot Power Limit Value and Slot Limit Scale fields within the Device Capa-
bilities register.

* Power Budgeting Capability register set for reporting power-related infor-
mation.

These devices must not consume more power than the lowest power specified
by the form factor specification. Once power budgeting software allocates addi-
tional power via the Set_Slot_Power_Limit message, the device can consume
the power specified, but not until it has been configured and enabled.

560

Chapter 15: Power Budgeting

Device Driver—The device’s software driver is responsible for verifying that
sufficient power is available for proper device operation prior to enabling it. If
the power is lower than that required by the device, the device driver is respon-
sible for reporting this to a higher software authority.

Figure 15-2: Elements Involved in Power Budget

Operating .
Firmware
System Power Budgeting

Reports Power Budget Info

Device PCI-XP to Power Manager including:

Driver 1 Power Budget
Manager - Total system power budget
- Total power allocated to system
Devices board devices,
- Total number and type of slots

PCI-XP
Bus Driver

. Configures Ports
Root or Switch Port with Power Limit

Information . .
\, SI;! Capabilities Reqgister
b 1 8171615 14 7 685 432 o
IPhysical Slot Numberl I I I I I I I I I I

Slot Power Scale
Slot Power Value

Hot-Plug
Controller 1

11D Joje2ipy|

Root or Switch port
sends power limit
message to add-in card.

ww |

—Ii—l'l—l 31 28 27 26 25 1817 1514131211 9 8 6 5§ 43 2 0O
<[]] HIllINEIEN

Device Capabilities Register

Captured Slot Power Limit Value

'——————————— Captured Slot Power Limit Scale

Power Budget Capability Registers

31 a
Enhanced Capability Header Register
RsvdP IData Select Register
Data Register
Power Budget Capability
RsvdP Register

561

PCI Express System Architecture

Slot Power Limit Control

Software is responsible for determining the maximum amount of power that an
expansion device is allowed to consume. This power allocation is based on the
power partitioning within the system, thermal capabilities, etc. Knowledge of
the system’s power and thermal limits comes from system firmware. The firm-
ware or power manager (which receives power information from firmware) is
responsible for reporting the power limits to each expansion port.

Expansion Port Delivers Slot Power Limit

Software writes to the Slot Power Limit Value and Slot Power Limit Scale fields of
the Slot Capability register to specify the maximum power that can be con-
sumed by the device. Software is required to specify a power value that reflects
one of the maximum values defined by the specification. For example, the elec-
tromechanical specification defines maximum power listed in Table 15-1.

Table 15-1: Maximum Power Consumption for System Board Expansion Slots

X1 Link X4/X8 Link X16 Link
Standard Height 10W 25W 25W (max) 25W 40W
(max) (max) (max) (max)
Low Profile Card 10W (max) 10W (max) 25W (max)

When these registers are written by power budget software, the expansion port
sends a Set_Slot_Power_Limit message to the expansion device. This procedure
is illustrated in Figure 15-3 on page 563.

562

1 6 Power

Management

The Previous Chapter

The previous chapter described the mechanisms that software can use to deter-
mine whether the system can support an add-in card based on the amount of
power and cooling capacity it requires.

This Chapter

This chapter provides a detailed description of PCI Express power manage-
ment, which is compatible with revision 1.1 of the PCI Bus PM Interface Specifica-
tion and the Advanced Configuration and Power Interface, revision 2.0 (ACPI). In
addition PCI Express defines extensions that are orthogonal to the PCI-PM
specification. These extensions focus primarily on Link Power and PM event
management. This chapter also provides an overall context for the discussion of
power management, by including a description of the OnNow Initiative, ACP]I,
and the involvement of the Windows OS is also provided.

The Next Chapter

PCI Express includes native support for hot plug implementations. The next
chapter discusses hot plug and hot removal of PCI Express devices. The specifi-
cation defines a standard usage model for all device and platform form factors
that support hot plug capability. The usage model defines, as an example, how
push buttons and indicators (LED’s) behave, if implemented on the chassis,
add-in card or module. The definitions assigned to the indicators and push but-
tons, described in this chapter, apply to all models of hot plug implementations.

567

PCI Express System Architecture

Introduction

PCI Express power management (PM) defines two major areas of support:

PCI-Compatible Power Management. PCI Express power management is
based upon hardware and software compatible with the PCI Bus Power
Management Interface Specification, Revision 1.1 (also referred to as PCI-PM)
and the Advanced Configuration and Power Interface Specification, Revision 2.0
(commonly known as ACPI). This support requires that all PCI Express
functions include the PCI Power Management Capability registers, which
permits transitions between function PM states.

Native PCI Express Extensions. These extensions define autonomous hard-
ware-based Link Power Management, mechanisms for waking the system,
a Message transaction to report Power Management Events (PME), and low
power to active state latency reporting and calculation.

This chapter is segmented into five major sections:

1.

The first section is intended as a primer for the discussion of power man-
agement, by reviewing the role of system software in controlling power
management features. This section restricts the discussion to the
power-management software from the Windows Operating System per-
spective.

The second section “Function Power Management” on page 585 discusses
PCI-PM required by PCI Express for placing functions into their low power
states. This section also documents the PCI-PM capability registers used in
PCI Express. Note that some of the register definitions are modified or not
used by PCI Express functions.

Next, “Link Active State Power Management” on page 608 describes the
autonomous Link power management that occurs when a device is in its
active state (DO0). Active State Power Management (ASPM) is a hard-
ware-based link power conservation mechanism. Software enables ASPM
and reads latency values to determine the level of ASPM appropriate, but
does not initiate transitions into ASPM.

The third section “Software Initiated Link Power Management” on
page 629 discusses the link power management, which is triggered by
PCI-PM software when it changes the power state of a device. PCI Express
devices are required to automatically conserve link power when software
places a device into a low power state, including D3cold, (caused by the ref-
erence clock and main power being completely removed from a device).
Finally, “Link Wake Protocol and PME Generation” on page 638 covers
Power Management Events (PME) and wakeup signaling. Devices may

568

Chapter 16: Power Management

request that software return them to the active state so they can handle an
event that has occurred. This is done by sending PME messages. When
power has been removed from a device, auxiliary power is required to
monitor events and to signal Wakeup for reactivating the link. Once a
device has been re-powered and the link has been re-trained the PME mes-
sage can be sent.

Primer on Configuration Software

The PCI Bus PM Interface Specification describes how to implement the PCI PM
registers that are required in PCI Express. These registers permit the OS to man-
age the power environment of both PCI and PCI Express functions.

Rather than immediately diving into a detailed nuts-and-bolts description of
the PCI Bus PM Interface Specification, it's a good idea to begin by describing
where it fits within the overall context of the OS and the system. Otherwise, this
would just be a disconnected discussion of registers, bits, signals, etc. with no
frame of reference.

Basics of PCI PM

The most popular OSs currently in use on PC-compatible machines are Win-
dows 98/NT/2000/XP. This section provides an overview of how the OS inter-
acts with other major software and hardware elements to manage the power
usage of individual devices and the system as a whole. Table 16-1 on page 569
introduces the major elements involved in this process and provides a very
basic description of how they relate to each other. It should be noted that neither
the PCI Power Management spec nor the ACPI spec (Advanced Configuration
and Power Interface) dictate the policies that the OS uses to manage power. It
does, however, define the registers (and some data structures) that are used to
control the power usage of PCI and PCI Express functions.

Table 16-1: Major Software/Hardware Elements Involved In PC PM

Element Responsibility

oS

Directs the overall system power management.To accomplish this goal,
the OS issues requests to the ACPI Driver, WDM (Windows Driver
Model) device drivers, and to the PCI Express Bus Driver. Application
programs that are power conservation-aware interact with the OS to
accomplish device power management.

569

PCI Express System Architecture

Table 16-1: Major Software/Hardware Elements Involved In PC PM (Continued)

Element

Responsibility

ACPI Driver

Manages configuration, power management, and thermal control of
devices embedded on the system board that do not adhere to any
industry standard interface specification. Examples could be
chipset-specific registers, system board-specific registers that control
power planes, etc. The PM registers within PCI Express functions
(embedded or otherwise) are defined by the PCI PM spec and are there-
fore not managed by the ACPI driver, but rather by the PCI Express Bus
Driver (see entry in this table).

WDM Device
Driver

The WDM driver is a Class driver that can work with any device that
falls within the Class of devices that it was written to control. The fact
that it’s not written for a specific device from a specific vendor means
that it doesn’t have register and bit-level knowledge of the device’s
interface. When it needs to issue a command to or check the status of
the device, it issues a request to the Miniport driver supplied by the
vendor of the specific device.

The WDM also doesn’t understand device characteristics that are pecu-
liar to a specific bus implementation of that device type. As an example,
the WDM doesn’t understand a PCI Express device’s configuration reg-
ister set. It depends on the PCI Express Bus Driver to communicate
with PCI Express configuration registers.

When it receives requests from the OS to control the power state of its
PCI Express device, it passes the request to the PCI Express Bus Driver:
When a request to power down its device is received from the OS, the
WDM saves the contents of its associated PCI Express function’s
device-specific registers (in other words, it performs a context save) and
then passes the request to the PCI Express Bus Driver to change the
power state of the device.

Conversely, when a request to re-power the device is received from the
OS, the WDM passes the request to the PCI Express Bus Driver to
change the power state of the device. After the PCI Express Bus Driver
has re-powered the device, the WDM then restores the context to the
PCI Express function’s device-specific registers.

Miniport Driver

Supplied by the vendor of a device, it receives requests from the WDM
Class driver and converts them into the proper series of accesses to the
device’s register set.

570

Chapter 16: Power Management

Table 16-1: Major Software/Hardware Elements Involved In PC PM (Continued)

Element

Responsibility

PCI Express Bus
Driver

This driver is generic to all PCI Express-compliant devices. It manages
their power states and configuration registers, but does not have
knowledge of a PCI Express function’s device-specific register set (that
knowledge is possessed by the Miniport Driver that the WDM driver
uses to communicate with the device’s register set). It receives requests
from the device’s WDM to change the state of the device’s power man-
agement logic:

When a request is received to power down the device, the PCI Express
Bus Driver is responsible for saving the context of the function’s PCI
Express configuration Header registers and any New Capability regis-
ters that the device implements. Using the device’s PCI Express config-
uration Command register, it then disables the ability of the device to
act as a Requester or to respond as the target of transactions. Finally, it
writes to the PCI Express function’s PM registers to change its state.
Conversely, when the device must be re-powered, the PCI Express Bus
Driver writes to the PCI Express function’s PM registers to change its
state. It then restores the function’s PCI Express configuration Header
registers to their original state.

PCI Express PM
registers within
each PCI Express
function’s PCI
Express configura-
tion space.

The location, format and usage of these registers is defined by the PCI
Express PM spec. The PCI Express Bus Driver understands this spec
and therefore is the entity responsible for accessing a function’s PM reg-
isters when requested to do so by the function’s device driver (i.e., its
WDM).

System Board
power plane and
bus clock control
logic

The implementation and control of this logic is typically system board
design-specific and is therefore controlled by the ACPI Driver (under
the OS’s direction).

OnNow Design Initiative Scheme Defines Overall PM

A whitepaper on Microsoft’s website clearly defines the goals of the OnNow
Design Initiative and the problems it addresses. The author has taken the liberty
of reproducing the text verbatim from the Goals section of that paper.

571

PCI Express System Architecture

Goals

The OnNow Design Initiative represents the overall guiding spirit behind the
sought-after PC design. The following are the major goals as stated in an
OnNow document:

The PC is ready for use immediately when the user presses the On button.
The PC is perceived to be off when not in use but is still capable of respond-
ing to wake-up events. Wake-up events might be triggered by a device
receiving input such as a phone ringing, or by software that has requested
the PC to wake up at some predetermined time.

Software adjusts its behavior when the PC's power state changes. The oper-
ating system and applications work together intelligently to operate the PC
to deliver effective power management in accordance with the user's cur-
rent needs and expectations. For example, applications will not inadvert-
ently keep the PC busy when it is not necessary, and instead will
proactively participate in shutting down the PC to conserve energy and
reduce noise.

All devices participate in the device power management scheme, whether
originally installed in the PC or added later by the user. Any new device can
have its power state changed as system use dictates.

System PM States

Table 16-2 on page 572 defines the possible states of the overall system with ref-
erence to power consumption. The “Working”, “Sleep”, and “Soft Off” states
are defined in the OnNow Design Initiative documents.

Table 16-2: System PM States as Defined by the OnNow Design Initiative

Power o
State Description
Working The system is completely usable and the OS is performing power

management on a device-by-device basis. As an example, the modem
may be powered down during periods when it isn’t being used.

572

17 Hot Plug

The Previous Chapter

The previous chapter provided a detailed description of PCI Express power
management, which is compatible with revision 1.1 of the PCI Bus PM Interface
Specification and the Advanced Configuration and Power Interface, revision 2.0
(ACPI). In addition PCI Express defines extensions that are orthogonal to the
PCI-PM specification. These extensions focus primarily on Link Power and PM
event management. This chapter also provides an overall context for the discus-
sion of power management, by including a description of the OnNow Initiative,
ACP]I, and the involvement of the Windows OS is also provided.

This Chapter

PCI Express includes native support for hot plug implementations. This chapter
discusses hot plug and hot removal of PCI Express devices. The specification
defines a standard usage model for all device and platform form factors that
support hot plug capability. The usage model defines, as an example, how push
buttons and indicators (LED’s) behave, if implemented on the chassis, add-in
card or module. The definitions assigned to the indicators and push buttons,
described in this chapter, apply to all models of hot plug implementations.

The Next Chapter

The next chapter provides an introduction to the PCI Express add-in card elec-
tromechanical specifications. It describes the card form factor, the connector
details, and the auxiliary signals with a description of their function. Other card
form factors are also briefly described.

649

PCI Express System Architecture

Background

Some systems that employ the use of PCI and PCI-X require high availability or
non-stop operation. For example, many customers require computer systems
that experience downtimes of just a few minutes a year, or less. Clearly, manu-
facturers must focus on equipment reliability, and also provide a method of
identifying and repairing equipment failures quickly. An important feature in
supporting these goals is the Hot Plug/Hot Swap solutions that provide three
important capabilities:

1. amethod of replacing failed expansion cards without turning the system off
2. keeping the O/S and other services running during the repair
3. shutting down and restarting software associated with the failed device

Prior to the widespread acceptance of PCI many proprietary Hot Plug solutions
were available to support this type of removal and replacement of expansion
cards. However the original PCI implementation was not designed to support
hot removal and insertion of cards, but a standardized solution for supporting
this capability in PCI was needed. Consequently, two major approaches to hot
replacement of PCI expansion devices have been developed. These approaches
are:

e Hot Plug PCI Card — used in PC Server motherboard and expansion chas-
sis implementations

* Hot Swap — used in CompactPCI systems based on a passive PCI back-
plane implementation.

In both solutions, control logic is implemented to isolate the card logic from the
PCI bus via electronic switches. In conjunction with isolation logic, power, reset,
and clock are controlled to ensure an orderly power down and power up of
cards when they are removed and replaced. Also, status and power LEDs pro-
vide indications to the user that it is safe to remove or install the card.

The need to extend hot plug support to PCI Express cards is clear. Designers of
PCI Express have incorporated Hot removal and replacement of cards as a
“native” feature. The specification defines configuration registers, Hot Plug
Messages, and procedures to support Hot Plug solutions.

650

Chapter 17: Hot Plug

Hot Plug in the PCI Express Environment

PCI Express Hot Plug is derived from the 1.0 revision of the Standard Hot Plug
Controller specification (SHPC 1.0) for PCI. The goals of PCI Express Hot Plug
are to:

® support the same “Standardized Usage Model” as defined by the Standard
Hot Plug Controller specification. This ensures that the PCI Express hot
plug is identical from the user perspective to existing implementations
based on the SHPC 1.0 specification

* support the same software model implemented by existing operating sys-
tems. However, if the OS includes a SHPC 1.0 compliant driver, it will not
work with PCI Express Hot Plug controllers, which have a different pro-
gramming interface.

PCI Express defines the registers necessary to support the integration of a Hot
Plug Controller within individual root and switch ports. Under Hot Plug soft-
ware control, these Hot Plug controllers and the associated port interface within
the root or switch port must control the card interface signals to ensure orderly
power down and power up as cards are removed and replaced. Hot Plug con-
trollers must:

¢ assert and deassert the PERST# signal to the PCI Express card connector

* remove or apply power to the card connector.

® Selectively turn on or turn off the Power and Attention Indicators associ-
ated with a specific card connector to draw the user’s attention to the con-
nector and advertise whether power is applied to the slot.

* Monitor slot events (e.g. card removal) and report these events to software
via interrupts.

PCI Express Hot-Plug (like PCI) is designed as a “no surprises” Hot-Plug meth-
odology. In other words, the user is not permitted to install or remove a PCI
Express card without first notifying software. System software then prepares
both the card and slot for the card’s removal and replacement, and finally indi-
cates to the end user (via visual indicators) status of the hot plug process and
notification that installation or removal may be performed.

651

PCI Express System Architecture

Surprise Removal Notification

PCI Express cards (unlike PCI) must implement the edge contacts with card
presence detect pins (PRSNT1# and PRSNT2#) that break contact first (when the
card is removed from the slot). This gives advanced notice to software of a “sur-
prise” removal and enough time to remove power prior to the signals breaking
contact.

Differences between PCIl and PCI Express Hot Plug

The elements needed to support hot plug are essentially the same between PCI
and PCI Express hot plug solutions. Figure 17-1 on page 653 depicts the PCI
hardware and software elements required to support hot plug. PCI solutions
implement a single standardized hot plug controller on the system board that
permits all hot plug slots on the bus to be controlled by a single controller. Also,
isolation logic is needed in the PCI environment to electrically disconnect a sin-
gle card slot from the bus prior to card removal.

PCI Express Hot Plug differs from the PCI implementation due to point-to-
point connections. (See Figure 17-2 on page 654) Point-to-point connections
eliminate the need for isolation logic and permit the hot plug controller to be
distributed to each port interface to which a connector is attached. A standard-
ized software interface defined for each root and switch port permits a stan-
dardized software interface to control hot plug operations. Note that the
programming interface for the PCI Express and PCI Hot Plug Controllers vary
and require different software drivers.

652

Chapter 17: Hot Plug

Figure 17-1: PCI Hot Plug Elements

User Iterface

Hot-Plug
Service

" Hot-Plug
System
river

" Device il Device Device
Driver Driver Driver

PClI Bus

Slot 2
Hot-Plug [RerttEes

Controller

653

PCI Express System Architecture

Figure 17-2: PCI Express Hot-Plug Hardware/Software Elements

User Interface

Operating Hot-Plu
System SF_lr\.n'iceg

Hot-Plug
Device Device Device Device Driver
Driver 1 Driver 2 Driver 3 Driver 4

1] 34

Hot-Plug Hot-Plug
Controller 1 RO Ot Controller 2

Complex

11D Jojeaipuy
112 Bnid 1oH
110 Jojedipu|

el
1815 Bnid jJoH

=
110 Bnid 1oH

=3
R}
=
&
w
22
o
8

Port [+]
Interface Interface

Hot-Plug Foit Hot-Plug

Controller 3 Controller 4

Switch

1D Jojeolp!
B2 Bnid 1oH
1D Jojeoip!

B2 Bnid o4

654

18 Add-in Cards and
Connectors

The Previous Chapter

PCI Express includes native support for hot plug implementations. The previ-
ous chapter discussed hot plug and hot removal of PCI Express devices. The
specification defines a standard usage model for all device and platform form
factors that support hot plug capability. The usage model defines, as an exam-
ple, how push buttons and indicators (LED’s) behave, if implemented on the
chassis, add-in card or module. The definitions assigned to the indicators and
push buttons, described in this chapter, apply to all models of hot plug imple-
mentations.

This Chapter

This chapter provides an introduction to the PCI Express add-in card electrome-
chanical specifications. It describes the card form factor, the connector details,
and the auxiliary signals with a description of their function. Other card form
factors are also briefly described, but it should be stressed that some of them
have not yet been approved by the SIG as of this writing.

The Next Chapter

The next chapter provides an introduction to configuration in the PCI Express
envionment. It introduces the configuration space in which a function’s config-
uration registers are implemented, how a function is discovered, how configu-
ration transactions are routed, PCI-compatible space, PCI Express extended
configuration space, and how to differentiate between a normal function and a
bridge.

685

PCI Express System Architecture

Introduction

One goal of the PCI Express add-in card electromechanical spec was to encour-
age migration from the PCI architecture found in many desktop and mobile
devices today by making the migration path straightforward and minimizing
the required hardware changes. Towards this end, PCI Express add-in cards are
defined to be very similar to the current PCI add-in card form factor, allowing
them to readily coexist with PCI slots in system boards designed to the ATX or
micro-ATX standard. PCI Express features like automatic polarity inversion and
lane reversal also help reduce layout issues on system boards, so they can still
be designed using the four-layer FR4 board construction commonly used today.
As a result, much of an existing system board design can remain the same when
it is modified to use the new architecture, and no changes are required for exist-
ing chassis designs.

Add-in Connector

The PCI Express add-in card connector (see Figure 18-1 on page 687 and Figure
18-2 on page 688) is physically very similar to the legacy PCI connector, but uses
a different pinout and does not supply -12V or 5V power. The physical dimen-
sions of a card are the same as the PCI add-in cards and the same IO bracket is
used. Table 18-1 on page 689 shows the pinout for a connector that supports PCI
Express cards up to x16 (16 lanes wide). Several signals are referred to as auxil-
iary signals in the spec, and these are highlighted and described in more detail
in the section that follows the table.

Note that cards with fewer lanes can be plugged into larger connectors that will
accommodate more lanes. This is referred to as Up-plugging. The opposite case,
installing a larger card into a smaller slot is called Down-plugging and, unlike
PCI, is physically prevented in PCI Express by the connector keying.) Conse-
quently, the connector described by the table will accommodate a card that is x1,
x4, x8, or x16. This flexibility in the connector is highlighted by notes in the table
that indicate each group of signals. For example, a x4 card plugged into this slot
would only make use of pins 1 through 32, and so the note indicating the end of
the x4 group of signals appears after pin 32. These segment indicators do not
represent physical spaces or keys, however, because there is only one mechani-
cal key on the connector, located between pins 11 and 12.

686

Chapter 18: Add-in Cards and Connectors

Figure 18-1: PCI Express x1 connector

687

PCI Express System Architecture

Figure 18-2: PCI Express Connectors on System Board

688

Chapter 18: Add-in Cards and Connectors

Table 18-1: PCI Express Connector Pinout

Pin # Side B Side A
Name Description Name Description
1 +12V 12V Power PRSNT1# | Hot-Plug presence
detect
2 +12V 12V Power +12V 12V Power
3 RSVD Reserved +12V 12V Power
4 GND Ground GND Ground
5 SMCLK SMBus (System Manage- | JTAG2 TCK (Test Clock),
ment Bus) Clock clock input for JTAG
interface
6 SMDAT SMBus (System Manage- | JTAG3 TDI (Test Data Input)
ment Bus) data
7 GND Ground JTAG4 TDO (Test Data out-
put)
8 +3.3V 3.3 V Power JTAG5 TMS (Test Mode
Select)
9 JTAG1 TRST# (Test Reset) resets | +3.3V 3.3 V Power
the JTAG interface
10 3.3Vaux 3.3 V Auxiliary Power +3.3V 3.3 V Power
11 WAKE# Signal for link reactiva- | PERST# Fundamental reset
tion
Mechanical Key
12 RSVD Reserved GND Ground
13 GND Ground REFCLK+ | Reference Clock
) :) (differential pair)
14 PETpO Transmitter differential REFCLK-
pair, Lane 0
15 PETn0 GND Ground

689

PCI Express System Architecture

Table 18-1: PCI Express Connector Pinout (Continued)

Pin # Side B Side A
Name Description Name Description
16 GND Ground PERpO Receiver differential
pair, Lane 0
17 PRSNT2# | Hot-Plug presence detect | PERn0
18 GND Ground GND Ground
End of the x1 connector
19 PETp1 Transmitter differential RSVD Reserved
pair, Lane 1
20 PETn1 GND Ground
21 GND Ground PERp1 Receiver differential
pair, Lane 1
22 GND Ground PERn1
23 PETp2 Transmitter differential GND Ground
pair, Lane 2
24 PETn2 GND Ground
25 GND Ground PERp2 Receiver differential
pair, Lane 2
26 GND Ground PERn2
27 PETp3 Transmitter differential GND Ground
pair, Lane 3
28 PETn3 GND Ground
29 GND Ground PERp3 Receiver differential
pair, Lane 3
30 RSVD Reserved PERn3
31 PRSNT2# | Hot-Plug presence detect | GND Ground
32 GND Ground RSVD Reserved
End of the x4 connector
33 PETp4 Transmitter differential RSVD Reserved
pair, Lane 4
34 PETn4 GND Ground

690

19 Configuration
Overview

The Previous Chapter

The previous chapter provided an introduction to the PCI Express add-in card
electromechanical specifications. It described the card form factor, the connector
details, and the auxiliary signals with a description of their function. Other card
form factors were also briefly described, but it should be stressed that some of
them have not yet been approved by the SIG as of this writing.

This Chapter

This chapter provides an introduction to configuration in the PCI Express envi-
onment. It introduces the configuration space in which a function’s configura-
tion registers are implemented, how a function is discovered, how
configuration transactions are routed, PCI-compatible space, PCI Express
extended configuration space, how a function is discovered, and how to differ-
entiate between a normal function and a bridge.

The Next Chapter

The next chapter provides a detailed description of the two configuration mech-
anisms used in a PCI Express platform: the PCI-compatible configuration mech-
anism, and the PCI Express enhanced configuration mechanism. It provides a
detailed description of the initialization period immediately following power-
up, as well as error handling during this period.

711

PCI Express System Architecture

Definition of Device and Function

Just as in the PCI environment, a device resides on a bus and contains one or
more functions (a device containing multiple functions is referred to as a multi-
function device). Each of the functions within a multifunction device provides a
stand-alone functionality. As an example, one function could be a graphics con-
troller while another might be a network interface.

Just as in PCI, a device may contain up to a maximum of eight functions num-
bered 0-through-7:

e The one-and-only function implemented in a single-function device must
be function 0.

¢ In a multifunction device, the first function must be function 0, while the
remaining functions do not have to be implemented in a sequential manner.
In other words, a device could implement functions 0, 2, and 7.

In Figure 19-1 on page 713, Device 0 on Bus 3 is a multifunction device contain-
ing two functions, each of which implements its own set of configuration regis-
ters.

712

Chapter 19: Configuration Overview

Figure 19-1: Example System

Root Complex

v

Bus 0 Host/PCI

\ Bridge
|

virtual [Pevice O Device 1| ;4o

Bus 1 Bus 5
Device 0 Device 0
1
Bus 6

1 1

Virtual | Virtual Vrtual

P2P P2P P2P
| I

1 [=

Function 0 Function 1

Bus 8
Device 0

Device 0 Device 0

Express
PCI
Bridge

PCI Bus Bus 9
1 1 1
PCI PCI PCI
Device Device Device

713

PCI Express System Architecture

Definition of Primary and Secondary Bus

The bus connected to the upstream side of a bridge is referred to as its primary
bus, while the bus connected to its downstream side is referred to as its second-
ary bus.

Topology Is Unknown At Startup

Refer to Figure 19-2 on page 714. When the system is first powered up, the con-
figuration software has not yet scanned the PCI Express fabric to discover the
machine topology and how the fabric is populated. The configuration software
is only aware of the existence of the Host/PCI bridge within the Root Complex
and that bus number 0 is directly connected to the downstream (i.e., secondary)
side of the bridge.

It has not yet scanned bus 0 and therefore does not yet know how many PCI
Express ports are implemented on the Root Complex. The process of scanning
the PCI Express fabric to discover its topology is referred to as the enumeration
process.

Figure 19-2: Topology View At Startup

714

Chapter 19: Configuration Overview

Each Function Implements a Set of Configuration
Registers

Introduction

At the behest of software executing on the processor, the Root Complex initiates
configuration transactions to read from or write to a function’s configuration
registers. These registers are accessed to discover the existence of a function as
well as to configure it for normal operation. In addition to memory, IO, and
message space, PCI Express also defines a dedicated block of configuration
space allocated to each function within which its configuration registers are
implemented.

Function Configuration Space

Refer to Figure 19-3 on page 717. Each function’s configuration space is 4KB in
size and is populated as described in the following two subsections.

PCI-Compatible Space

The 256 byte (64 dword) PCI-compatible space occupies the first 256 bytes of
this 4KB space. It contains the function’s PCIl-compatible configuration regis-
ters. This area can be accessed using either of two mechanisms (both of which
are described later):

* The PCI configuration access mechanism (see “PCI-Compatible Configura-
tion Mechanism” on page 723).

¢ The PCI Express Enhanced Configuration mechanism (see “PCI Express
Enhanced Configuration Mechanism” on page 731).

The first 16 dwords comprises the PCI configuration header area, while the
remaining 48 dword area is reserved for the implementation of function-specific
configuration registers as well as PCI New Capability register sets. It is manda-
tory that each PCI Express function must implement the PCI Express Capability
Structure (defined later) within this area. A full description of the PCI-compati-
ble registers may be found in “PCI Compatible Configuration Registers” on
page 769.

715

PCI Express System Architecture

PCI Express Extended Configuration Space

The remaining 3840 byte (960 dword) area is referred to as the PCI Express
Extended Configuration Space. It is utilized to implement the optional PCI
Express Extended Capability registers:

Advanced Error Reporting Capability register set.
Virtual Channel Capability register set.

Device Serial Number Capability register set.
Power Budgeting Capability register set.

A full description of the these optional register sets may be found in “Express-
Specific Configuration Registers” on page 893.

Host/PCI Bridge’s Configuration Registers

The Host/PCI bridge’s configuration register set does not have to be accessed
using either of the spec-defined configuration mechanisms mentioned in the
previous section. Rather, it is mapped into a Root Complex design-specific
address space (almost certainly memory space) that is known to the platform-
specific BIOS firmware. However, its configuration register layout and usage
must adhere to the standard Type 0 template defined by the PCI 2.3 spec (see
“Header Type 0” on page 770 for details on the Type 0 register template).

716

20 Confzgumtwn
Mechanisms

The Previous Chapter

The previous chapter provided an introduction to configuration in the PCI
Express environment. It introduced the configuration space in which a func-
tion’s configuration registers are implemented, how a function is discovered,
how configuration transactions are routed, PCI-compatible space, PCI Express
extended configuration space, and how to differentiate between a normal func-
tion and a bridge.

This Chapter

This chapter provides a detailed description of the two configuration mecha-
nisms used in a PCI Express platform: the PCI-compatible configuration mecha-
nism, and the PCI Express enhanced configuration mechanism. It provides a
detailed description of the initialization period immediately following power-
up, as well as error handling during this period.

The Next Chapter

The next chapter provides a detailed description of the discovery process and
bus numbering. It describes:

Enumerating a system with a single Root Complex
Enumerating a system with multiple Root Complexes

A multifunction device within a Root Complex or a Switch
An Endpoint embedded in a Switch or Root Complex
Automatic Requester ID assignment.

Root Complex Register Blocks (RCRBs)

721

PCI Express System Architecture

Introduction

Refer to Figure 20-1 on page 723. Each function implements a 4KB configuration
space. The lower 256 bytes (64 dwords) is the PCI-compatible configuration
space, while the upper 960 dwords is the PCI Express extended configuration
space.

There are two mechanisms available that allow configuration software running
on the processor to stimulate the Root Complex to generate configuration trans-
actions:

e The PCI 2.3-compatible configuration access mechanism.
e The PCI express enhanced configuration mechanism.

These two mechanisms are described in this chapter.

Intel x86 and PowerPC processors (as two example processor families) do not
possess the ability to perform configuration read and write transactions. They
use memory and IO (IO is only in the x86 case) read and write transactions to
communicate with external devices. This means that the Root Complex must be
designed to recognize certain IO or memory accesses initiated by the processor
as requests to perform configuration accesses.

722

Chapter 20: Configuration Mechanisms

Figure 20-1: A Function’s Configuration Space

PCI-Compatible Configuration Mechanism

For x86-based PC-AT compatible systems, the 2.3 PCI spec defines a method
that utilizes processor-initiated IO accesses to instruct the host/PCI bridge (in
this case, within the Root Complex) to perform PCI configuration accesses.The

723

PCI Express System Architecture

spec does not define a configuration mechanism to be used in systems other
than PC-AT compatible systems.

Background

The x86 processor family is capable of addressing up to, but no more than, 64KB
of IO address space. In the EISA spec, the usage of this IO space was defined in
such a manner that the only IO address ranges available for the implementation
of the PCI Configuration Mechanism (without conflicting with an ISA or EISA
device) were 0400h - 04FFh, 0800h - 08FFh, and 0C00h - OCFFh. Many EISA sys-
tem board controllers already resided within the 0400h - 04FFh address range,
making it unavailable.

Consider the following:

* As with any other PCI function, a host/PCI bridge may implement up to 64
dwords of configuration registers.

e Each PCI function on each PCI bus requires 64 dwords of dedicated config-
uration space.

Due to the lack of available IO real estate within the 64KB of IO space, it wasn’t
feasible to map each configuration register directly into the processor’s 10
address space. Alternatively, the system designer could implement the configu-
ration registers within the processor's memory space. The amount of memory
space consumed aside, the address range utilized would be unavailable for allo-
cation to regular memory. This would limit the system's flexibility regarding the
mapping of actual memory.

PCI-Compatible Configuration Mechanism
Description

General

The PCI-Compatible Configuration Mechanism utilizes two 32-bit IO ports
implemented in the Host/PCI bridge within the Root Complex, located at IO
addresses 0CF8h and 0CFCh. These two ports are:

e The 32-bit Configuration Address Port, occupying IO addresses 0CF8h
through 0CFBh.

e The 32-bit Configuration Data Port, occupying IO addresses OCFCh
through 0CFFh.

724

Chapter 20: Configuration Mechanisms

Accessing one of a function's PCI-compatible configuration registers is a two
step process:

1. Write the target bus number, device number, function number and dword
number to the Configuration Address Port and set the Enable bit in it to
one.

2. Perform a one-byte, two-byte, or four-byte 10 read from or a write to the
Configuration Data Port.

In response, the host/PCI bridge within the Root Complex compares the speci-
fied target bus to the range of buses that exist on the other side of the bridge
and, if the target bus resides beyond the bridge, it initiates a configuration read
or write transaction (based on whether the processor is performing an IO read
or write with the Configuration Data Port).

Configuration Address Port

Refer to Figure 20-2 on page 726. The Configuration Address Port only latches
information when the processor performs a full 32-bit write to the port. A 32-bit
read from the port returns its contents. The assertion of reset clears the port to
all zeros. Any 8- or 16-bit access within this IO dword is treated as an 8- or 16-bit
IO access. The 32-bits of information written to the Configuration Address Port
must conform to the following template (illustrated in Figure 20-2 on page 726):

® bits [1:0] are hard-wired, read-only and must return zeros when read.

® bits [7:2] identify the target dword (1-0f-64) within the target function's PCI-
compatible configuration space. When the Root Complex subsequently
generates the resultant configuration request packet, this bit field supplies
the content of the packet’s Register Number field and the packet’s Extended
Register Number field is set to all zeros. This configuration access mecha-
nism is therefore limited to addressing the first 64 dwords of the targeted
function’s configuration space (i.e., the function’s PCI-compatible address
space).

® bits [10:8] identify the target function number (1-of-8) within the target

device.

bits [15:11] identify the target device number (1-0f-32).

bits [23:16] identifies the target bus number (1-0f-256).

bits [30:24] are reserved and must be zero.

bit 31 must be set to a one, enabling the translation of a subsequent proces-

sor IO access to the Configuration Data Port into a configuration access. If

bit 31 is zero and the processor initiates an IO read from or IO write to the

Configuration Data Port, the transaction is treated as an IO transaction

request.

725

PCI Express System Architecture

Figure 20-2: Configuration Address Port at 0CF8h

0CFBh 0CFAh 0CF9h 0CF8h
31 30 24 23 16 15 1110 8 7 210
Bus Device ;
Reserved | Nymber | Number [Number| Doublewordf 00

Should always be zeros J

Enable Configuration Space Mapping
1 = enabled

Bus Compare and Data Port Usage

Refer to Figure 20-3 on page 728. The Host/PCI bridge within the Root Com-
plex implements a Bus Number register and a Subordinate Bus Number regis-
ter. In a chipset that only supports one Root Complex, the bridge may have a
bus number register that is hardwired to 0, a read/write register that reset
forces to 0, or it just implicitly knows that it is the bridge to bus 0. If bit 31 in the
Configuration Address Port (see Figure 20-2 on page 726) is enabled (i.e., set to
one), the bridge compares the target bus number to the range of buses that
exists beyond the bridge.

Target Bus = 0. If the target bus is the same as the value in the Bus Num-
ber register, this is a request to perform a configuration transaction on bus 0.
A subsequent IO read from or write to the bridge’s Configuration Data Port
at OCFCh causes the bridge to generate a Type 0 configuration read or write
transaction. When devices that reside on a PCI bus detect a Type 0 configu-
ration transaction in progress, this informs them that one of them is the tar-
get device (rather than a device on one of the subordinate buses beneath the
bus the Type 0 transaction is being performed on).

726

21 pci Express
Enumeration

The Previous Chapter

The previous chapter provided a detailed description of the two configuration
mechanisms used in a PCI Express platform: the PCI-compatible configuration
mechanism, and the PCI Express enhanced configuration mechanism. It pro-
vided a detailed description of the initialization period immediately following
power-up, as well as error handling during this period.

This Chapter

This chapter provides a detailed description of the discovery process and bus
numbering. It describes:

Enumerating a system with a single Root Complex
Enumerating a system with multiple Root Complexes

A multifunction device within a Root Complex or a Switch
An Endpoint embedded in a Switch or Root Complex
Automatic Requester ID assignment.

Root Complex Register Blocks (RCRBs)

The Next Chapter

The next chapter provides a detailed description of the configuration registers
residing a function’s PCI-compatible configuration space. This includes the reg-
isters for both non-bridge and bridge functions.

Introduction

The discussions associated with Figure 19-1 on page 713 and Figure 20-4 on
page 730 assumed that, each of the buses had been discovered and numbered
earlier in time.

741

PCI Express System Architecture

In reality, at power up time, the configuration software only knows of the exist-
ence of bus 0 (the bus that resides on the downstream side of the Host/PCI
bridge) and does not even know what devices reside on bus 0 (see Figure 21-1
on page 742).

This chapter describes the enumeration process: the process of discovering the
various buses that exist and the devices and functions which reside on each of
them.

Figure 21-1: Topology View At Startup

Enumerating a System With a Single Root Complex

Figure 21-2 on page 748 illustrates an example system before the buses and
devices have been enumerated, while Figure 21-3 on page 749 shows the same
system after the buses and devices have been enumerated. The discussion that
follows assumes that the configuration software uses either of the two configu-
ration mechanisms defined in the previous chapter. At startup time, the config-
uration software executing on the processor performs bus/device/function
enumeration in the following manner:

742

Chapter 21: PCI Express Enumeration

Starting with device 0 (bridge A), the enumeration software attempts to
read the Vendor ID from function 0 in each of the 32 possible devices on bus
0.

e If a valid (not FFFFh) Vendor ID is returned from bus 0, device 0, func-
tion 0, this indicates that the device is implemented and contains at
least one function. Proceed to the next step.

e If a value of FFFFh were returned as the Vendor ID, this would indicate
that function 0 is not implemented in device 0. Since it is a rule that the
first function implemented in any device must be function 0, this would
mean that device was not implemented and the enumeration software
would proceed to probe bus 0, device 1, function 0.

The Header Type field (see Figure 21-6 and Figure 21-7) in the Header regis-

ter (see Figure 21-4) contains the value one (0000001b) indicating that this is

a PCI-to-PCI bridge with the PCI-compatible register layout shown in Fig-

ure 21-7 on page 752. This discussion assumes that the Multifunction bit (bit

7) in the Header Type register is 0, indicating that function 0 is the only

function in this bridge. It should be noted that the spec does not preclude imple-

menting multiple functions within this bridge and each of these functions, in turn,
could represent virtual PCI-to-PCI bridges.

Software now performs a series of configuration writes to set the bridge’s

bus number registers as follows:

¢ Primary Bus Number Register = 0.

¢ Secondary Bus Number Register = 1.

¢ Subordinate Bus Number Register = 1.

The bridge is now aware that the number of the bus directly attached to its

downstream side is 1 (Secondary Bus Number = 1) and the number of the

bus farthest downstream of it is 1 (Subordinate Bus Number = 1).

Software updates the Host/PCI bridge’s Subordinate Bus Number register

to1.

The enumeration software reads bridge A’s Capability Register (Figure 21-5

on page 750 and Table 21 - 1 on page 753; a detailed description of this regis-

ter can be found in “PCI Express Capabilities Register” on page 898). The

value 0100b in the register’s Device/Port Type field indicates that this a

Root Port on the Root Complex.

The specification states that the enumeration software must perform a

depth-first search, so before proceeding to discover additional functions/

devices on bus 0, it must proceed to search bus 1.

Software reads the Vendor ID of bus 1, device 0, function 0. A valid Vendor

ID is returned, indicating that bus 1, device 0, function 0 exists.

The Header Type field in the Header register contains the value one

(0000001b) indicating that this is a PCI-to-PCI bridge. In addition, bit 7 is a

0, indicating that bridge C is a single-function device.

743

PCI Express System Architecture

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Bridge C’s Capability Register contains the value 0101b in the Device/Port
Type field indicating that this is the upstream Port on a switch.

Software now performs a series of configuration writes to set bridge C’s bus
number registers as follows:

* Primary Bus Number Register = 1.

e Secondary Bus Number Register = 2.

e Subordinate Bus Number Register = 2.

Bridge C is now aware that the number of the bus directly attached to its
downstream side is 2 (Secondary Bus Number = 2) and the number of the
bus farthest downstream of it is 2 (Subordinate Bus Number = 2).

Software updates the Subordinate Bus Number registers in the Host/PCI
bridge and in bridge A to 2.

Continuing with its depth-first search, a read is performed from bus 2,
device 0, function 0’s Vendor ID register. The example assumes that bridge
D is device 0, function 0 on bus 2.

A valid Vendor ID is returned, indicating that bus 2, device 0, function 0
exists.

The Header Type field in the Header register contains the value one
(0000001b) indicating that this is a PCI-to-PCI bridge. In addition, bit 7 is a
0, indicating that bridge D is a single-function device.

Bridge D’s Capability Register contains the value 0110b in the Device/Port
Type field indicating that this is the downstream Port on a switch.

Software now performs a series of configuration writes to set bridge D’s bus
number registers as follows:

* Primary Bus Number Register = 2.

¢ Secondary Bus Number Register = 3.

¢ Subordinate Bus Number Register = 3.

Bridge D is now aware that the number of the bus directly attached to its
downstream side is 3 (Secondary Bus Number = 3) and the number of the
bus farthest downstream of it is 3 (Subordinate Bus Number = 3).

Software updates the Subordinate Bus Number registers in the Host/PCI
bridge, bridge A, and bridge C to 3.

Continuing with its depth-first search, a read is performed from bus 3,
device 0, function 0’s Vendor ID register.

A valid Vendor ID is returned, indicating that bus 3, device 0, function 0
exists.

The Header Type field in the Header register contains the value zero
(0000000b) indicating that this is an Endpoint device. In addition, bit 7isa 1,
indicating that this is a multifunction device.

The device’s Capability Register contains the value 0000b in the Device/
Port Type field indicating that this is an Endpoint device.

The enumeration software performs accesses to the Vendor ID of functions

744

Chapter 21: PCI Express Enumeration

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

1-through-7 in bus 3, device 0 and determines that only function 1 exists in
addition to function 0.

Having exhausted the current leg of the depth first search, the enumeration
software backs up one level (to bus 2) and moves on to read the Vendor ID
of the next device (device 1). The example assumes that bridge E is device 1,
function 0 on bus 2.

A valid Vendor ID is returned, indicating that bus 2, device 1, function 0
exists.

The Header Type field in bridge E’s Header register contains the value one
(0000001b) indicating that this is a PCI-to-PCI bridge. In addition, bit 7 is a
0, indicating that bridge E is a single-function device.

Bridge E’s Capability Register contains the value 0110b in the Device/Port
Type field indicating that this is the downstream Port on a switch.

Software now performs a series of configuration writes to set bridge E’s bus
number registers as follows:

¢ Primary Bus Number Register = 2.

¢ Secondary Bus Number Register = 4.

¢ Subordinate Bus Number Register = 4.

Bridge E is now aware that the number of the bus directly attached to its
downstream side is 4 (Secondary Bus Number = 4) and the number of the
bus farthest downstream of it is 4 (Subordinate Bus Number = 4).

Software updates the Subordinate Bus Number registers in the Host/PCI
bridge, bridge A, and bridge C to 4.

Continuing with its depth-first search, a read is performed from bus 4,
device 0, function 0's Vendor ID register.

A valid Vendor ID is returned, indicating that bus 4, device 0, function 0
exists.

The Header Type field in the Header register contains the value zero
(0000000b) indicating that this is an Endpoint device. In addition, bit 7is a 0,
indicating that this is a single-function device.

The device’s Capability Register contains the value 0000b in the Device/
Port Type field indicating that this is an Endpoint device.

Having exhausted the current leg of the depth first search, the enumeration
software backs up one level (to bus 2) and moves on to read the Vendor ID
of the next device (device 2). The example assumes that devices 2-through-
31 are not implemented on bus 2, so no additional devices are discovered on
bus 2.

The enumeration software backs up to the bus within the Root Complex
(bus 0) and moves on to read the Vendor ID of the next device (device 1).
The example assumes that bridge B is device 1, function 0 on bus 0.

In the same manner as previously described, the enumeration software dis-
covers bridge B and performs a series of configuration writes to set bridge

745

PCI Express System Architecture

36.
37.

38.

39.

40.

41.
42.

43.

44.

45.

B’s bus number registers as follows:

¢ Primary Bus Number Register = 0.

e Secondary Bus Number Register = 5.

* Subordinate Bus Number Register = 5.

Bridge B is now aware that the number of the bus directly attached to its
downstream side is 5 (Secondary Bus Number = 5) and the number of the
bus farthest downstream of it is 5 (Subordinate Bus Number = 5).

The Host/PCI’s Subordinate Bus Number is updated to 5.

Bridge F is then discovered and a series of configuration writes are per-
formed to set its bus number registers as follows:

¢ Primary Bus Number Register = 5.

¢ Secondary Bus Number Register = 6.

¢ Subordinate Bus Number Register = 6.

Bridge F is now aware that the number of the bus directly attached to its
downstream side is 6 (Secondary Bus Number = 6) and the number of the
bus farthest downstream of it is 6 (Subordinate Bus Number = 6).

The Host/PCI bridge’s and bridge B’ Subordinate Bus Number registers are
updated to 6.

Bridge G is then discovered and a series of configuration writes are per-
formed to set its bus number registers as follows:

¢ Primary Bus Number Register = 6.

¢ Secondary Bus Number Register = 7.

¢ Subordinate Bus Number Register = 7.

Bridge F is now aware that the number of the bus directly attached to its
downstream side is 7 (Secondary Bus Number = 7) and the number of the
bus farthest downstream of it is 7 (Subordinate Bus Number = 7).

The Host/PCI bridge’s Subordinate Bus Number register is updated to 7.
Bridge B's and F’s Subordinate Bus Number registers are also updated to 7.
A single-function Endpoint device is discovered at bus 7, device 0, function 0.
Bridge H is then discovered and a series of configuration writes are per-
formed to set its bus number registers as follows:

* Primary Bus Number Register = 6.

e Secondary Bus Number Register = 8.

e Subordinate Bus Number Register = 8.

Bridge F is now aware that the number of the bus directly attached to its
downstream side is 8 (Secondary Bus Number = 8) and the number of the
bus farthest downstream of it is 8 (Subordinate Bus Number = 8).

The Host/PCI bridge’s Subordinate Bus Number register is updated to 8.
Bridge B's and F’s Subordinate Bus Number registers are also updated to 8.
Bridge] is discovered and its Capability register’s Device/Port Type fields
identifies it as a PCI Express-to-PCI bridge.

A series of configuration writes are performed to set bridge J’s bus number
registers as follows:

746

22 pci Compatible

Configuration
Registers

The Previous Chapter

The previous chapter provides a detailed description of the discovery process
and bus numbering. It described:

Enumerating a system with a single Root Complex
Enumerating a system with multiple Root Complexes

A multifunction device within a Root Complex or a Switch
An Endpoint embedded in a Switch or Root Complex
Automatic Requester ID assignment.

Root Complex Register Blocks (RCRBs)

This Chapter

This chapter provides a detailed description of the configuration registers resid-
ing a function’s PCI-compatible configuration space. This includes the registers
for both non-bridge and bridge functions.

The Next Chapter

The next chapter provides a detailed description of device ROMs associated
with PCI, PCI Express, and PCI-X functions. This includes the following topics:

e device ROM detection.
e internal code/data format.
¢ shadowing.

769

PCI Express System Architecture

e initialization code execution.
e interrupt hooking.

Header Type O

General

Figure 22-1 on page 771 illustrates the format of a function’s Header region (for
functions other than PCI-to-PCI bridges and CardBus bridges). The registers
marked in black are always mandatory. Note that although many of the config-
uration registers in the figure are not marked mandatory, a register may be
mandatory for a particular type of device. The subsequent sections define each
register and any circumstances wherein it may be mandatory.

As noted earlier, this format is defined as Header Type 0. The registers within
the Header are used to identify the device, to control its functionality and to
sense its status in a generic manner. The usage of the device’s remaining 48
dwords of PCI-compatible configuration space is intended for device-specific
registers, but, with the advent of the 2.2 PCI spec, is also used as an overflow
area for some new registers defined in the PCI spec (for more information, refer
to “Capabilities Pointer Register” on page 779).

770

Chapter 22: PCI Compatible Configuration Registers

Figure 22-1: Header Type 0

771

PCI Express System Architecture

Header Type 0 Registers Compatible With PCI

The Header Type 0 PCI configuration registers that are implemented and used
identically in PCI and PCI Express are:

Vendor ID register.

Device ID register.

Revision ID register.

Class Code register.
Subsystem Vendor ID register.
Subsystem ID register.
Header Type register.

BIST register.

Capabilities Pointer register.
CardBus CIS Pointer register.
Expansion ROM Base Address register.

The sections that follow provide a description of each of these registers.

Header Type 0 Registers Incompatible With PCI

In a non-bridge PCI Express function, the definitions of the following configura-
tion registers in the function’s PCI-compatible configuration space differ from
the PCI spec’s definition of the respective register definitions:

Command Register

Status Register

Cache Line Size Register
Master Latency Timer Register
Interrupt Line Register
Interrupt Pin Register

Base Address Registers
Min_Gnt/Max_Lat Registers

The sections that follow define the implementation/usage differences of these
registers. For a full description of their implementation in a PCI function, refer
to the MindShare book entitled PCI System Architecture, Fourth Edition (pub-
lished by Addison-Wesley). For a full description of their implementation in a
PCI-X function, refer to the MindShare book entitled PCI-X System Architecture,
First Edition (published by Addison-Wesley).

772

Chapter 22: PCI Compatible Configuration Registers

Registers Used to Identify Device’s Driver

The OS uses some combination of the following mandatory registers to deter-
mine which driver to load for a device:

Vendor ID.

Device ID.

Revision ID.

Class Code.
SubSystem Vendor ID.
SubSystem ID.

Vendor ID Register

PCI-Compatible register. Always mandatory. This 16-bit register identifies the man-
ufacturer of the function. The value hardwired in this read-only register is
assigned by a central authority (the PCI SIG) that controls issuance of the num-
bers. The value FFFFh is reserved and must be returned by the Host/PCI bridge
when an attempt is made to perform a configuration read from a configuration
register in a non-existent function. In PCI or PCI-X, the read attempt results in a
Master Abort, while in PCI Express it results in the return of UR (Unsupported
Request) completion status. In either case, the bridge must return a Vendor ID
of FFFFh. The error status returned is not considered to be an error, but the spec-
ification says that the bridge must nonetheless set its Received Master Abort bit
in its configuration Status register.

Device ID Register

PCI-Compatible register. Always mandatory. This 16-bit value is assigned by the
function manufacturer and identifies the type of function. In conjunction with
the Vendor ID and possibly the Revision ID, the Device ID can be used to locate
a function-specific (and perhaps revision-specific) driver for the function.

Revision ID Register

PCI-Compatible register. Always mandatory. This 8-bit value is assigned by the
function manufacturer and identifies the revision number of the function. If the
vendor has supplied a revision-specific driver, this is handy in ensuring that the
correct driver is loaded by the OS.

773

PCI Express System Architecture

Class Code Register

General. PCI-Compatible register. Always mandatory. The Class Code register
is pictured in Figure 22-2 on page 775. It is a 24-bit, read-only register
divided into three fields: base Class, Sub Class, and Programming Interface.
It identifies the basic function of the function (e.g., a mass storage control-
ler), a more specific function sub-class (e.g., IDE mass storage controller),
and, in some cases, a register-specific programming interface (such as a spe-
cific flavor of the IDE register set).

¢ The upper byte defines the base Class of the function,
¢ the middle byte defines a sub-class within the base Class,
¢ and the lower byte defines the Programming Interface.

The currently-defined base Class codes are listed in Table 22-1 on page 775.
Table 2 on page 1020 through Table 19 on page 1031 define the Subclasses
within each base Class. For many Class/SubClass categories, the Program-
ming Interface byte is hardwired to return zeros (in other words, it has no
meaning). For some, such as VGA-compatible functions and IDE control-
lers, it does have meaning.

This register is useful when the OS is attempting to locate a function that a
Class driver can work with. As an example, assume that a particular device
driver has been written to work with any display adapter that is 100% XGA
register set-compatible. If the OS can locate a function with a Class of 03h
(see Table22-1 on page?775) and a Sub Class of 0lh (see Table5 on
page 1022), the driver will work with that function. A Class driver is more
flexible than a driver that has been written to work only with a specific
function from a specific vendor.

The Programming Interface Byte. For some functions (such as the XGA
display adapter used as an example in the previous section) the combina-
tion of the Class Code and Sub Class Code is sufficient to fully-define its
level of register set compatibility. The register set layout for some function
types, however, can vary from one implementation to another. As an exam-
ple, from a programming interface perspective there are a number of flavors
of IDE mass storage controllers, so it’s not sufficient to identify yourself as
an IDE mass storage controller. The Programming Interface byte value (see
Table 20 on page 1031) provides the final level of granularity that identifies
the exact register set layout of the function.

774

23 Expansion ROMs

The Previous Chapter

The previous chapter provided a detailed description of the configuration regis-
ters residing a function’s PCI-compatible configuration space. This included the
registers for both non-bridge and bridge functions.

This Chapter

This chapter provides a detailed description of device ROMs associated with
PCI, PCI Express, and PCI-X functions. This includes the following topics:

device ROM detection.
internal code/data format.
shadowing.

initialization code execution.
interrupt hooking.

The Next Chapter

The next chapter provides a description of:

The PCI Express Capability register set in a function’s PCI-compatible con-
figuration space.

The optional PCI Express Extended Capabilities register sets in a function’s
extended configuration space:

— The Advanced Error Reporting Capability register set.

— Virtual Channel Capability register set.

— Device Serial Number Capability register set.

— Power Budgeting Capability register set.

RCRBs.

871

PCI Express System Architecture

ROM Purpose—Device Can Be Used In Boot Process

In order to boot the OS into memory, the system needs three devices:

* A mass storage device to load the OS from. This is sometimes referred to as
the IPL (Initial Program Load) device and is typically an IDE or a SCSI hard
drive.

e A display adapter to enable progress messages to be displayed during the
boot process. In this context, this is typically referred to as the output
device.

¢ A keyboard to allow the user to interact with the machine during the boot
process. In this context, this is typically referred to as the input device.

The OS must locate three devices that fall into these categories and must also
locate a device driver associated with each of the devices. Remember that the
OS hasn’t been booted into memory yet and therefore hasn’t loaded any load-
able device drivers into memory from disk! This is the main reason that device
ROMs exist. It contains a device driver that permits the device to be used dur-
ing the boot process.

ROM Detection

When the configuration software is configuring a PCI, PCI-X, or PCI-Express
function, it determines if a function-specific ROM exists by checking to see if the
designer has implemented an Expansion ROM Base Address Register (refer to
Figure 23-1 on page 873).

As described in “Expansion ROM Base Address Register” on page 783, the pro-
grammer writes all ones (with the exception of bit zero, to prevent the enabling
of the ROM address decoder; see Figure 23-1 on page 873) to the Expansion
ROM Base Address Register and then reads it back. If a value of zero is
returned, then the register is not implemented and there isn’'t an expansion
ROM associated with the device.

On the other hand, the ability to set any bits to ones indicates the presence of the
Expansion ROM Base Address Register. This may or may not indicate the pres-
ence of a device ROM. Although the address decoder and a socket may exist for
a device ROM, the socket may not be occupied at present. The programmer
determines the presence of the device ROM by:

872

Chapter 23: Expansion ROMs

® assigning a base address to the register’s Base Address field,
* enabling its decoder (by setting bit 0 in the register to one),
e and then attempting to read the first two locations from the ROM.

If the first two locations contain the ROM signature—A A55h—then the ROM is
present.

Figure 23-1 on page 873 illustrates the format of the Expansion ROM Base
Address Register. Assume that the register returns a value of FFFE0000h when
read back after writing all ones to it. Bit 17 is the least-significant bit that was
successfully changed to a one and has a binary-weighted value of 128K. This
indicates that it is a 128KB ROM decoder and bits [24:17] within the Base
Address field are writable. The programmer now writes a 32-bit start address
into the register and sets bit zero to one to enable its ROM address decoder. The
function’s ROM address decoder is then enabled and the ROM (if present) can
be accessed. The maximum ROM decoder size permitted by the PCI spec is
16MB, dictating that bits [31:25] must be read /write.

The programmer then performs a read from the first two locations of the ROM
and checks for a return value of AA55h. If this pattern is not received, the ROM
is not present. The programmer disables the ROM address decoder (by clearing
bit zero of the Expansion ROM Base Address Register to zero). If AA55h is
received, the ROM exists and a device driver code image must be copied into
main memory and its initialization code must be executed. This topic is covered
in the sections that follow.

Figure 23-1: Expansion ROM Base Address Register Bit Assignment

873

PCI Express System Architecture

Figure 23-2: Header Type Zero Configuration Register Format

874

Chapter 23: Expansion ROMs

ROM Shadowing Required

The PCI spec requires that device ROM code is never executed in place (i.e.,
from the ROM). It must be copied to main memory. This is referred to as “shad-
owing” the ROM code. This requirement exists for two reasons:

e ROM access time is typically quite slow, resulting in poor performance
whenever the ROM code is fetched for execution.

¢ Once the initialization portion of the device driver in the ROM has been
executed, it can be discarded and the code image in main memory can be
shortened to include only the code necessary for run-time operation. The
portion of main memory allocated to hold the initialization portion of the
code can be freed up, allowing more efficient use of main memory.

Once the presence of the device ROM has been established (see the previous
section), the configuration software must copy a code image into main memory
and then disable the ROM address decoder (by clearing bit zero of the Expan-
sion ROM Base Address Register to zero). In a non-PC environment, the area of
memory the code image is copied to could be anywhere in memory space. The
specification for that environment may define a particular area.

In a PC environment, the ROM code image must be copied into main memory
into the range of addresses historically associated with device ROMs:
000C0000h through O000DFFFFh. If the Class Code indicates that this is the
VGA’s device ROV, its code image must be copied into memory starting at
location 000C0000h.

The next section defines the format of the information in the ROM and how the
configuration software determines which code image (yes, there can be more
than one device driver) to load into main memory.

ROM Content

Multiple Code Images

The PCI spec permits the inclusion of more than one code image in a PCI device
ROM. Each code image would contain a copy of the device driver in a specific
machine code, or in interpretive code (explained later). The configuration soft-
ware can then scan through the images in the ROM and select the one best

875

PCI Express System Architecture

suited to the system processor type. The ROM might contain drivers for various
types of devices made by this device’s vendor. The code image copied into main
memory should match up with the function’s ID. To this end, each code image
also contains:

e the Vendor ID and Device ID. This is useful for matching up the driver with
a function that has a vendor/device match.

e the Class Code. This is useful if the driver is a Class driver that can work
with any compatible device within a Class/SubClass. For more informa-
tion, see “Class Code Register” on page 774.

Figure 23-3 on page 877 illustrates the concept of multiple code images embed-
ded within a device ROM. Each image must start on an address evenly-divisible
by 512. Each image consists of two data structures, as well as a run-time code
image and an initialization code image. The configuration software interrogates
the data structures in order to determine if this is the image it will copy to main
memory and use. If it is, the configuration software:

Copies the image to main memory,

Disables the expansion ROM’s address decoder,

Executes the initialization code,

If the initialization code shortens the length indicator in the data structure,
the configuration software deallocates the area of main memory that held
the initialization portion of the driver (in Figure 23-4 on page 879, notice
that the initialization portion of the driver is always at the end of the
image).

5. The area of main memory containing the image is then write-protected.

Ll S

The sections that follow provide a detailed discussion of the code image format
and the initialization process.

876

24 Express-Specific

Configuration
Registers

The Previous Chapter

The previous chapter provided a detailed description of device ROMs associ-
ated with PCI, PCI Express, and PCI-X functions. This included the following

topics:

e device ROM detection.

e internal code/data format.

e shadowing.

e initialization code execution.
[]

interrupt hooking.

This Chapter

This chapter provides a description of:

The PCI Express Capability register set in a function’s PCI-compatible con-
figuration space.

The optional PCI Express Extended Capabilities register sets in a function’s
extended configuration space:

— The Advanced Error Reporting Capability register set.

— Virtual Channel Capability register set.

— Device Serial Number Capability register set.

— Power Budgeting Capability register set.

RCRBs.

893

PCI Express System Architecture

Introduction

Refer to Figure 24-1 on page 895. As described earlier in “Each Function Imple-
ments a Set of Configuration Registers” on page 715, each PCI Express function
has a dedicated 4KB memory address range within which its configuration reg-
isters are implemented. Each Express function must implement the PCI Express
Capability register set somewhere in the lower 48 dwords of the PCI-compatible
register space (i.e., within the lower 48 dword region of the first 64 dwords of
configuration space). In addition, the function may optionally implement any of
the PCI Express Extended Capability register sets. The sections that follow pro-
vide a detailed description of each of these Express-specific register sets.

894

Chapter 24: Express-Specific Configuration Registers

Figure 24-1: Function’s Configuration Space Layout

895

PCI Express System Architecture

PCI Express Capability Register Set

Introduction

Refer to Figure 24-2 on page 897. Otherwise referred to as the PCI Express Capa-
bility Structure, implementation of the PCI Express Capability register set is
mandatory for each function. It is implemented as part of the linked list of
Capability register sets that reside in the lower 48 dwords of a function’s PCI-
compatible register area. It should be noted however, that some portions of this
register set are optional.

Register implementation requirements:

¢ Every Express function must implement the registers that reside in dwords
0-through-4.

* The bridge associated with each Root Port must implement the registers
that reside in dwords seven and eight.

* Each bridge associated with a Root Port or a downstream Switch Port that is
connected to a slot (i.e., an add-in card slot) must implement the registers
that reside in dwords five and six.

The sections that follow provide a detailed description of each of these registers.

896

Chapter 24: Express-Specific Configuration Registers

Figure 24-2: PCI Express Capability Register Set

Required Registers

General

The sections that follow describe each of the required registers within the PCI
Express Capability register set. The following registers must be implemented by
all Express functions:

PCI Express Capability ID Register
Next Capability Pointer Register
PCI Express Capabilities Register
Device Capabilities Register
Device Control Register

Device Status Register

Link Capabilities Register

Link Control Register

Link Status Register

897

PCI Express System Architecture

PCI Express Capability ID Register

This read-only field must contain the value 10h, indicating this is the start of the
PCI Express Capability register set.

Next Capability Pointer Register
This read-only field contains one of the following:

* The dword-aligned, non-zero offset to the next capability register set in the
lower 48 dwords of the function’s PCI-compatible configuration space.

* (Oh, if the PCI Express Capability register set is the final register set in the
linked list of capability register sets in the function’s PCI-compatible config-
uration space.

PCI Express Capabilities Register

Figure 24-3 on page 898 illustrates this register and Table 24 - 1 on page 899 pro-
vides a description of each bit field in this register.

Figure 24-3: PCI Express Capabilities Register

898

pendix A

lest, Debug and

Verification of PCI
Express™ Designs

by Gordon Getty, Agilent Technologies

Scope

The need for greater I/O bandwidth in the computer industry has caused
designers to shift from using parallel buses like ISA, PCI™ and PCI-X™ to
using multi-lane serial interconnects running at Gigabit speed. The industry has
settled on PCI Express™ technology as the key I/O technology of the future, as
it delivers on the higher bandwidth requirements, helps to reduce cost for sili-
con vendors and leverages the software environment from the pervasive PCI/
PCI-X technology. While the change from parallel buses to multi-lane serial
buses sounds like a small step, it presented a whole set of new debug and vali-
dation challenges to designers.

Serial technology requires a different approach to testing, starting from the
physical layer and moving up through the transaction layer. In many cases, the
parallel bus had several slots connected to the same physical lines, which
allowed you to connect test equipment to the same bus and monitor other
devices. With the point-to-point nature of serial technologies, this is no longer
possible, and with the speed moving from the megahertz range to the gigahertz
range, probing of the signal becomes a real challenge.

961

PCI Express System Architecture

The second generation of PCI Express, known as PCI Express 2.0 (PCle™ 2.0), is
based on PCI Express 1.0 principles, but it supports speeds of up to 5 GT/s. Pre-
serving backwards compatibility with PCI Express 1.0 presents its own set of
challenges. Also, new and extended capabilities related to energy savings -
including active state power management (ASPM) and dynamic link width
negotiation - makes achieving interoperability between devices more challeng-
ing, especially if these features are implemented incorrectly. Careful design and
validation processes can help you avoid costly chip re-spins to fix interoperabil-
ity issues.

This chapter will guide you through overcoming the challenges faced when you
debug and validate your PCI Express devices.

962

Appendix A: Test, Debug and Verification

Electrical Testing at the Physical Layer

PCI Express specification requires devices to have a built-in mechanism for test-
ing the electrical characteristics of the devices, such as exists on motherboards
and systems. When the transmit lanes of a device are terminated with a 50-ohm
load, the transmit lanes are forced into a special mode known as compliance
mode.

When a device is in compliance mode, it automatically generates a specific pat-
tern known as the compliance pattern. Two different de-emphasis modes are
introduced with the 5.0 Gb/s transfer rate. All add-in cards should be tested at
the 2.5 Gb/s speed with -3.5 dB de-emphasis (Figure A-1), and at 5.0 Gb/s (Fig-
ure A-2) with both -3.5 dB de-emphasis and -6 dB de-emphasis.

Figure A-1: 2.5-GT/s PCle Compliance Pattern

963

PCI Express System Architecture

Figure A-2: 5-GT/s PCle Compliance Pattern

The equipment required to carry out electrical testing on PCle 2.0 devices
includes a high-performance oscilloscope such as the Agilent Technologies
DS081304B 13-GHz Infiniium scope and a board into which you can plug an
add-in card to provide a load on its transmitters. Alternatively, you can use a
load board that plugs into a system and forces its transmitters into compliance
mode ensuring that the device is generating a measurable signal.

PCI Express specifications (V1.1 and later) requires you to capture and process
one million unit intervals of data to be able to make a valid measurement. The
Agilent 81304B scope has a “QuickMeas” (QM) function that provides user-
defined macros and data capture functionality intended to meet needs that may
be very specific to a given application or measurement.

The PCI-SIG® provides compliance base board and compliance load board to
help accomplish these tasks. These boards provide a consistent platform to
make electrical measurements. Figures A-3 and A-4 show a typical setup.

964

Appendix A: Test, Debug and Verification

Figure A-3: Typical Setup for Testing and Add-In Card

DS081304B/ DS0O81204B scope

Data post
processing

Figure A-4: Typical Setup for Testing a Motherboard

N5480A N5480A
head head

965

PCI Express System Architecture

With the setups shown in Figures A-3 and A-4, data is captured on the oscillo-
scope. Post-processing is used to measure jitter on the reference clock and to
measure the random and deterministic jitter on the data lines. In electrical test-
ing, you need to test each individual lane independently, as each lane is likely to
have different electrical characteristics. The data is captured and then post-pro-
cessed to form an eye diagram, such as the one shown in Figure A-5.

Figure A-5: Oscilloscope Eye Diagram

Differential Signal [v)

¥3 Eye Graph - Transition Bits

252

0.4~

0.3~

0.2+

=

'

=

=
1

'
=
|

'

=

ra
|

0.4

Unit Intervals

WIEW ALLEYES

WORST HIGH RAIL WORST LOW RAIL WORST TOP MARCWORST BOT MARL WORST JITTER

Using the eye diagram, you can measure the tolerances of voltage and jitter
against the specification to determine if the device is compliant electrically. If
you find the device is not compliant, you have an early indicator that interoper-
ability is a potential issue.

966

Appendix B

Markets & Applications for the
PCI Express™ Architecture

By Larry Chisvin, Akber Kazmi, and Danny Chi (PLX Technology, Inc.)

Introduction

Since its definition in the early 1990’s, PCI has become one of the most success-
ful interconnect technologies ever used in computers. Originally intended for
personal computer systems, the PCI architecture has penetrated into virtually
every computing platform category, including servers, storage, communica-
tions, and a wide range of embedded control applications. From its early incar-
nation as a 32-bit 33MHz interconnect, it has been expanded to offer higher
speeds (currently in widespread use at 64-bit 133MHz, with faster versions on
the way). Most importantly, each advancement in PCI bus speed and width pro-
vided backward software compatibility, allowing designers to leverage the
broad code base.

As successful as the PCI architecture has become, there is a limit to what can be
accomplished with a multi-drop, parallel shared bus interconnect technology.
Issues such as clock skew, high pin count, trace routing restrictions in printed
circuit boards (PCB), bandwidth and latency requirements, physical scalability,
and the need to support Quality of Service (QoS) within a system for a wide
variety of applications lead to the definition of the PCI Express™ architecture.

PCI Express is the natural successor to PCI, and was developed to provide the
advantages of a state-of-the-art, high-speed serial interconnect technology and
packet based layered architecture, but maintain backward compatibility with
the large PCI software infrastructure. The key goal was to provide an opti-

989

PCI Express System Architecture

mized and universal interconnect solution for a great variety of future plat-
forms, including desktop, server, workstation, storage, communications and
embedded systems.

Figure B-1: Migration from PCI to PCI Express

PCI

PC| >

EXPRESS

PCI Express

E%<’ PCI-X
64-bit/133MHz

CompactPCl

64-bit/66MHz

e

This chapter provides an overview of the markets and applications that PCI
Express is expected to serve, with an explanation of how the technology will be
integrated into each application, and some exploration of the advantages that
PCI Express brings to each usage.

Let’s review the key benefits of the PCI Express architecture before we discuss
its application in different markets. Some of the key features of the architecture
we reviewed in this book are:

Packet-based layered architecture

Serial interconnection at 2.5 GHz (5 GHz being considered)
Link-to-link and end-to-end error detection (CRC check)
Point-to-point data flow

Differential low voltage signals for noise immunity

990

Appendix B: Markets/Apps for PCI Express (by PLX)

* Quality of Service (QoS)and Virtual Channels (VC)
e Scalable from 1x to 32x lanes
¢ Software (backward) compatibility with legacy PCI systems

Enterprise Computing Systems

PCI Express is expected to be deployed initially in desktop and server systems.
These computers typically utilize a chipset solution that includes one or more
microprocessors and two types of special interconnect devices, called north-
bridges and southbridges. Northbridges connect the CPU with memory, graph-
ics and I/O. Southbridges connect to standardized I/O devices such as hard
disk drives, networking modules or devices, and often PCI expansion slots.

Desktop Systems

Typical use of PCI Express in a desktop application is shown in Figure B-2 on
page 992. The PCI Express ports come directly out of the northbridge, and are
bridged to PCI slots that are used for legacy plug-in cards. In some implemen-
tations the PCI Express interconnections will be completely hidden from the
user behind PCI bridges, and in other implementations there will be PCI
Express slots in a new PCI Express connector form factor.

The major benefit for using PCI Express in this application is the low pin count
associated with serial interface technology, which will translate into lower cost.
This low pin count provides the ability to create northbridges and 1/O bridges
with smaller footprints, and a significantly fewer number of board traces
between the components. This provides a major reduction in the area and com-
plexity of the signal/trace routing in PCBs.

Server Systems

Figure B-3 on page 993 shows PCI Express used in an enterprise server sys-
tem. This system has similarities to the desktop system, since there is a north-
bridge and southbridge providing functions that parallel their roles in the
desktop system, and the form factor of the system is often similar. Servers,
however, place a greater emphasis on performance than desktop systems do.

991

PCI Express System Architecture

Figure B-2: PCI Express in a Desktop System

GRU

r

Graphics ™= North .
S{{[ofo] - — =outh

— hWemory

I Bridge
Eridge
% PCI Express
PCI Slots Slots

L E—

To achieve their performance and time to market objectives, server designers
have adopted PCI-X. The primary attraction to PCI-X has been increased
throughput, but with PCI code compatibility. PCI-X offers clear benefits com-
pared to PCI, and will remain in server systems for a long while, but it suffers
from the same shared bus limitations that have already been discussed. The
high throughput of PCI Express serial interconnection provides a measurable
benefit versus legacy interconnect technologies, especially as the speed of the
I/0 interconnect and the number of high speed I/O ports on each card
increases.

Some systems will only provide PCI-X slots, but many newer systems will also
offer several PCI Express slots. The number of PCI Express slots will grow over
time compared to the PCI-X slots, and eventually will become dominant in the
same way that PCI did with previous interconnect technologies. Since band-
width is a primary motivator for a server, typical PCI Express slots will be either
x4 or x8 lanes.

In most low to midrange server systems, the PCI-X bridging and PCI Express
slots will be provided by using the ports right off of the northbridge. However,
high-end systems will require more I/O slots of both kinds. Since PCI Express
is a point-to-point technology, the only way to provide additional connection
links is through a device called a fan out switch. Specifically, the purpose of a

992

Appendix B: Markets/Apps for PCI Express (by PLX)

fan out switch is to multiply the number of PCI Express lanes from an upstream
host port to a higher number of downstream PCI Express devices. Figure 3
below, shows a PCI Express switch used in the system for this purpose.

Figure B-3: PCI Express in a Server System

1

Maorth P—
Eridge m 0Uth
Eridge

—_— PO >
EXPRESS
PCIl Express Slots \

n-l]-n'l]- Bridge e c,itc|, S— Eidge — /0

a— hWemory

PCI-X Slots

é%i

Embedded Control

One of the many areas that PCI has penetrated is embedded-control systems.
This describes a wide range of applications that measure, test, monitor, or dis-
play data, and includes applications such as industrial control, office automa-
tion, test equipment, and imaging.

In these applications, system designers typically utilize embedded processors.
In many instances, leading-edge companies will differentiate their products by
utilizing some custom logic in the form of an ASIC or FPGA. A bridge is often
used to translate the simple custom interface and connect it to the bus.

It is expected that the embedded-control market will quickly migrate to PCI
Express, with a typical example shown in Figure B-4 on page 994. Applications
such as imaging and video streaming are always hungry for bandwidth, and
the additional throughput of x4 or x8 PCI Express links will translate into

993

PCI Express System Architecture

higher video resolution, or the handling of more video streams by the system.
Others will implement PCI Express because of the noise resistance its LVDS
traces provide, or because of its efficient routing and its ability to hook together
subsystems through a standard cable. Still others will choose PCI Express sim-
ply because of its ubiquity.

Figure B-4: PCI Express in Embedded-Control Applications

S—— Mem = r
im _ = e s J CPU
e Control DSF m oensar n
CPL
1 l Eridge
FPGAIASIC FPGAIASIC Bndge
b A -
Eridge Bridoe
PC|I >
EXPRESS
Siwitch

Storage Systems

PCI has become a common backplane technology for mainstream storage sys-
tems. Although it provides a good mix of features, low cost, and throughput,
the “bus” has become a performance bottleneck. Figure B-5 on page 995 shows
the use of PCI Express in a storage system. Systems similar to the one shown in
Figure B-5 on page 995 can be built on a motherboard, or as part of a backplane.
The discussion in this section applies to both form factors.

We have highlighted increased bandwidth as one of the advantages of moving
to PCI Express, and nowhere is it more beneficial and obvious than in storage.
The bandwidth demanded by I/O connections such as Ethernet, Fibre Channel,
SCSI, and InfiniBand, is increasing rapidly. And the ability to move data
between I/O modules and the host processor is critical to overall system perfor-
mance.

994

pendix C

Implementing Intelligent Adapters and Multi-Host
Systems With PCI Express™ Technology

By Jack Regula, Danny Chi and Tim Canepa (PLX Technology, Inc.)

Introduction

Intelligent adapters, host failover mechanisms and multiprocessor systems are
three usage models that are common today, and expected to become more prev-
alent as market requirements for next generation systems. Despite the fact that
each of these was developed in response to completely different market
demands, all share the common requirement that systems that utilize them
require multiple processors to co-exist within the system. This appendix out-
lines how PCI Express can address these needs through non-transparent bridg-
ing.

Because of the widespread popularity of systems using intelligent adapters,
host failover and multihost technologies, PCI Express silicon vendors must pro-
vide a means to support them. This is actually a relatively low risk endeavor;
given that PCI Express is software compatible with PCI, and PCI systems have
long implemented distributed processing. The most obvious approach, and the
one that PLX espouses, is to emulate the most popular implementation used in
the PCI space for PCI Express. This strategy allows system designers to use not
only a familiar implementation but one that is a proven methodology, and one
that can provide significant software reuse as they migrate from PCI to PCI
Express.

This paper outlines how multiprocessor PCI Express systems will be imple-
mented using industry standard practices established in the PCI paradigm. We
tirst, however, will define the different usage models, and review the successful
efforts in the PCI community to develop mechanisms to accommodate these
requirements. Finally, we will cover how PCI Express systems will utilize non-
transparent bridging to provide the functionality needed for these types of sys-
tems.

999

PCI Express System Architecture

Usage Models

Intelligent Adapters

Intelligent adapters are typically peripheral devices that use a local processor to
offload tasks from the host. Examples of intelligent adapters include RAID con-
trollers, modem cards, and content processing blades that perform tasks such as
security and flow processing. Generally, these tasks are either computationally
onerous or require significant I/O bandwidth if performed by the host. By add-
ing a local processor to the endpoint, system designers can enjoy significant
incremental performance. In the RAID market, a significant number of products
utilize local intelligence for their I/O processing.

Another example of intelligent adapters is an ecommerce blade. Because gen-
eral purpose host processors are not optimized for the exponential mathematics
necessary for SSL, utilizing a host processor to perform an SSL handshake typi-
cally reduces system performance by over 90%. Furthermore, one of the require-
ments for the SSL handshake operation is a true random number generator.
Many general purpose processors do not have this feature, so it is actually diffi-
cult to perform SSL handshakes without dedicated hardware. Similar examples
abound throughout the intelligent adapter marketplace; in fact, this usage
model is so prevalent that for many applications it has become the de facto stan-
dard implementation.

Host Failover

Host failover capabilities are designed into systems that require high availabil-
ity. High availability has become an increasingly important requirement, espe-
cially in storage and communication platforms. The only practical way to
ensure that the overall system remains operational is to provide redundancy for
all components. Host failover systems typically include a host based system
attached to several endpoints. In addition, a backup host is attached to the sys-
tem and is configured to monitor the system status. When the primary host
fails, the backup host processor must not only recognize the failure, but then
take steps to assume primary control, remove the failed host to prevent addi-
tional disruptions, reconstitute the system state, and continue the operation of
the system without losing any data.

1000

Appendix D: Intelligent Adapters & Multi-Host Systems

Multiprocessor Systems

Multiprocessor systems provide greater processing bandwidth by allowing
multiple computational engines to simultaneously work on sections of a com-
plex problem. Unlike systems utilizing host failover, where the backup proces-
sor is essentially idle, multiprocessor systems utilize all the engines to boost
computational throughput. This enables a system to reach performance levels
not possible by using only a single host processor. Multiprocessor systems typi-
cally consist of two or more complete sub-systems that can pass data between
themselves via a special interconnect. A good example of a multihost system is
a blade server chassis. Each blade is a complete subsystem, often replete with its
own CPU, Direct Attached Storage, and I/0O.

The History Multi-Processor Implementations Using PCI

To better understand the implementation proposed for PCI Express, one needs
to first understand the PCI implementation.

PCI was originally defined in 1992 for personal computers. Because of the
nature of PCs at that time, the protocol architects did not anticipate the need for
multiprocessors. Therefore, they designed the system assuming that the host
processor would enumerate the entire memory space. Obviously, if another pro-
cessor is added, the system operation would fail as both processors would
attempt to service the system requests.

1Several methodologies were subsequently invented to accommodate the
requirement for multiprocessor capabilities using PCIL. The most popular imple-
mentation, and the one discussed in this paper for PCI Express, is the use of
non-transparent bridging between the processing subsystems to isolate their
memory spaces.

Because the host does not know the system topology when it is first powered up
or reset, it must perform discovery to learn what devices are present and then
map them into the memory space. To support standard discovery and configu-
ration software, the PCI specification defines a standard format for Control and
Status Registers (CSRs) of compliant devices. The standard PCI-to-PCI bridge
CSR header, called a Type 1 header, includes primary, secondary and subordi-

1. Unless explicitly noted, the architecture for multiprocessor systems using PCl and
PCI Express are similar and may be used interchangeably.

1001

PCI Express System Architecture

nate bus number registers that, when written by the host, define the CSR
addresses of devices on the other side of the bridge. Bridges that employ a Type
1 CSR header are called transparent bridges.

A Type 0 header is used for endpoints. A Type 0 CSR header includes base
address registers (BARs) used to request memory or 1/O apertures from the
host. Both Type 1 and Type 0 headers include a class code register that indicates
what kind of bridge or endpoint is represented, with further information avail-
able in a subclass field and in device ID and vendor ID registers. The CSR
header format and addressing rules allow the processor to search all the
branches of a PCI hierarchy, from the host bridge down to each of its leaves,
reading the class code registers of each device it finds as it proceeds, and assign-
ing bus numbers as appropriate as it discovers PCI-to-PCI bridges along the
way. At the completion of discovery, the host knows which devices are present
and the memory and I/O space each device requires to function. These concepts
are illustrated in Figure C - 1.

Figure C-1: Enumeration Using Transparent Bridges

Host

—a Memory Space

Transparent Bridge
(Type 1)

AN
AN
2 NN

Z

S

%

Transparent Eridge A
(Type 1) AN

End Point

(Type0)

Host Allocates
hlemory

e

1002

Appendix D: Intelligent Adapters & Multi-Host Systems

Implementing Multi-host/Intelligent Adapters in PCI
Express Base Systems

Up to this point, our discussions have been limited to one processor with one
memory space. As technology progressed, system designers began developing
end points with their own native processors built in. The problem that this
caused was that both the host processor and the intelligent adapter would,
upon power up or reset, attempt to enumerate the entire system, causing sys-
tem conflict and ultimately a non-functional system.?

To get around this, architects designed non-transparent bridges. A non-trans-
parent PCI-to-PCI Bridge, or PCI Express-to-PCI Express Bridge, is a bridge that
exposes a Type 0 CSR header on both sides and forwards transactions from one
side to the other with address translation, through apertures created by the
BARs of those CSR headers. Because it exposes a Type 0 CSR header, the bridge
appears to be an endpoint to discovery and configuration software, eliminating
potential discovery software conflicts. Each BAR on each side of the bridge cre-
ates a tunnel or window into the memory space on the other side of the bridge.
To facilitate communication between the processing domains on each side, the
non-transparent bridge also typically includes doorbell registers to send inter-
rupts from each side of the bridge to the other, and scratchpad registers accessi-
ble from both sides.

A non-transparent bridge is functionally similar to a transparent bridge in that
both provide a path between two independent PCI buses (or PCI Express links).
The key difference is that when a non-transparent bridge is used, devices on the
downstream side of the bridge (relative to the system host) are not visible from
the upstream side. This allows an intelligent controller on the downstream side
to manage the devices in its local domain, while at the same time making them
appear as a single device to the upstream controller. The path between the two
buses allows the devices on the downstream side to transfer data directly to the
upstream side of the bus without directly involving the intelligent controller in
the data movement. Thus transactions are forwarded across the bus unfettered
just as in a PCI-to-PCI Bridge, but the resources responsible are hidden from the
host, which sees a single device.

2. While we are using an intelligent endpoint as the examples, we should note
that a similar problem exists for multi-host systems.

1003

PCI Express System Architecture

Because we now have two memory spaces, the PCI Express system needs to
translate addresses of transactions that cross from one memory space to the
other. This is accomplished via Translation and Limit Registers associated with
the BAR. See “Address Translation” on page 1013 for a detailed description;
Figure C-2 on page 1004 provides a conceptual rendering of Direct Address
Translation. Address translation can be done by Direct Address Translation
(essentially replacement of the data under a mask), table lookup, or by adding
an offset to an address. Figure C-3 on page 1005 shows Table Lookup Transla-
tion used to create multiple windows spread across system memory space for
packet originated in a local I/O processor’s domain, as well as Direct Address

Translation used to create a single window in the opposite direction.

Figure C-2: Direct Address Translation

Host
Frocessor

Non Transparent

Mon Transparent
Bridge

Local
Frocessor

BAR
BAR

Local
Memaory

Host
Memary

R

"li

1004

pendix D

Class Codes

This appendix lists the class codes, sub-class codes, and programming interface
byte definitions currently provided in the 2.3 PCI specification.

Figure D-1: Class Code Register

Table D-1: Defined Class Codes

Class Description

00h Function built before class codes were defined (in other words:
before rev 2.0 of the PCI spec).

01h Mass storage controller.
02h Network controller.
03h Display controller.

04h Multimedia device.

05h Memory controller.

06h Bridge device.

1019

PCI Express System Architecture

Table D-1: Defined Class Codes (Continued)

Class Description
07h Simple communications controllers.
08h Base system peripherals.
0%h Input devices.
0Ah Docking stations.
0Bh Processors.
0Ch Serial bus controllers.
0Dh Wireless controllers.
OEh Intelligent IO controllers.
OFh Satellite communications controllers.
10h Encryption/Decryption controllers.
11h Data acquisition and signal processing controllers.
12h-FEh | Reserved.
FFh Device does not fit any of the defined class codes.
Table D-2: Class Code 0 (PCI rev 1.0)
Sub-Class | Prog.Il/F Description
00h 00h All devices other than VGA.
01h 01h VGA-compatible device.
Table D-3: Class Code 1: Mass Storage Controllers
Sub-Class Prog. I/F Description
00h 00h SCSI controller.
01h xxh IDE controller. See Table D-20 on page 1031
for definition of Programming Interface byte.

1020

Appendix D: Class Codes

Table D-3: Class Code 1: Mass Storage Controllers (Continued)

Sub-Class Prog. I/F Description

02h 00h Floppy disk controller.

03h 00h IPI controller.

04h 00h RAID controller.

20h ATA controller with single DMA .
oo 30h ATA controller with chained DMA.
80h 00h Other mass storage controller.
Table D-4: Class Code 2: Network Controllers
Sub-Class | Prog. I/F Description

00h 00h Ethernet controller.

01h 00h Token ring controller.

02h 00h FDDI controller.

03h 00h ATM controller.

04h 00h ISDN Controller.

05h 00h WorldFip controller.

06h PICMG 2.14 Multi Computing. For information
on the use of the Programming Interface Byte,
see the PICMG 2.14 Multi Computing
Specification (http:/ /www.picmg.com).

80h 00h Other network controller.

1021

PCI Express System Architecture

Table D-5: Class Code 3: Display Controllers

Sub-Class | Prog.I/F Description
00h 00h VGA-compatible controller, responding to
memory addresses 000A0000h through
000BFFFFh (Video Frame Buffer), and 1O
addresses 03BOh through 3BBh, and 03COh-
through-03DFh and all aliases of these
addresses.
01h 8514-compatible controller, responding to 10
address 02E8h and its aliases, 02EAh and
02EFh.
01h 00h XGA controller.
02h 00h 3D Controller.
80h 00h Other display controller.
Table D-6: Class Code 4: Multimedia Devices
Sub-Class | Prog. I/F Description
00h 00h Video device.
01h 00h Audio device.
02h 00h Computer Telephony device.
80h 00h Other multimedia device.
Table D-7: Class Code 5: Memory Controllers
Sub-Class | Prog. I/F Description
00h 00h RAM memory controller.
01h 00h Flash memory controller.
80h 00h Other memory controller.

1022

Appendix D: Class Codes

Table D-8: Class Code 6: Bridge Devices

Sub-Class | Prog. I/F Description
00h 00h Host/PCI bridge.
01h 00h PCI/ISA bridge.
02h 00h PCI/EISA bridge.
03h 00h PCI/Micro Channel bridge.
04h 00h PCI/PCI bridge.
01h Subtractive decode PCI-to-PCI bridge. Sup-
ports subtractive decode in addition to normal
PCI-to-PClI functions. For a detailed discussion
of this bridge type, refer to the MindShare PCI
System Architecture book, Fourth Edition (pub-
lished by Addison-Wesley).
05h 00h PCI/PCMCIA bridge.
06h 00h PCI/NuBus bridge.
07h 00h PCI/CardBus bridge.
08h xxh RACEway bridge. RACEway is an ANSI stan-
dard (ANSI/VITA 5-1994) switching fabric. Bits
71 of the Interface bits are reserved, read-only
and return zeros. Bit 0 is read-only and, if 0,
indicates that the bridge is in Transparent
mode, while 1 indicates that it’s in End-Point
mode.
40h Semi-transparent PCI-to-PCI bridge
with the primary PCI bus side facing
the system host processor.
0%h
80h Semi-transparent PCI-to-PCI bridge
with the secondary PCI bus side
facing the system host processor.
0Ah 00h InfiniBand-to-PCI host bridge.
80h 00h Other bridge type.

1023

PCI Express System Architecture

Table D-9: Class Code 7: Simple Communications Controllers

Sub-Class | Prog. I/F Description

00h Generic XT-compatible serial controller.

01h 16450-compatible serial controller.

02h 16550-compatible serial controller.

00h 03h 16650-compatible serial controller.

04h 16750-compatible serial controller.

05h 16850-compatible serial controller.

06h 16950-compatible serial controller.

00h Parallel port.

01h Bi-directional parallel port.

01h 02h ECP 1.X-compliant parallel port.

03h IEEE 1284 controller.

FEh IEEE 1284 target device (not a controller).

02h 00h Multiport serial controller.

1024

Appendix E

Locked Transactions
Series

Introduction

Native PCI Express implementations do not support lock. Support for Locked
transaction sequences exist solely for supporting legacy device software execut-
ing on the host processor that performs a locked RMW (read-modify-write)
operation on a memory semaphore that may reside within the memory of a leg-
acy PCI device. This chapter defines the protocol defined by PCI Express for
supporting locked access sequences that target legacy devices. Failure to sup-
port lock may result in deadlocks.

Background

PCI Express continues the PCI 2.3 tradition of supporting locked transaction
sequences (RMW—ready-modify-write) to support legacy device software. PCI
Express devices and their software drivers are never allowed to use instructions
that cause the CPU to generate locked operations that target memory that
resides beneath the Roor Complex level.

Locked operations consist of the basic RMW sequence, that is:

1. One or more memory reads from the target location to obtain the sema-
phore value.

2. The modification of the data within a processor register.

3. One or more writes to write the modified semaphore value back to the tar-
get memory location.

1033

PCI Express System Architecture

This transaction sequence must be performed such that no other accesses are
permitted to the target locations (or device) during the locked sequence. This
requires blocking other transactions during the operation. The result potentially
can result in deadlocks and poor performance.

The devices required to support locked sequences are:

¢ The Root Complex.

* Any Switches in the path leading to a legacy devices that may be the target
of a locked transaction series.

e A PCI Express - to - PCI Bridge.

e A PCI Express-to-PCI-X Bridge.

¢ Any legacy devices whose device drivers issue locked transactions to mem-
ory residing within the legacy device.

No other devices must support locked transactions and must ignore any locked
transactions that they receive.

Lock in the PCI environment is achieved, in part, via the use of the PCI LOCK#
signal. The equivalent functionality in PCI Express is accomplished via a trans-
action that emulates the LOCK signal functionality.

The PCI Express Lock Protocol

The only source of lock supported by PCI Express is the system processor, and,
as a consequence, the source of all locked operations in PCI Express is the Root
Complex (acting as the processor’s surrogate). A locked operation is performed
between a Root Complex downstream port and the PCI Express downstream
port to which the targeted legacy device is attached. In most systems, the legacy
device is typically a PCI Express-to-PCI or PCI Express-to-PCI-X bridge. Only
one locked sequence at a time is supported for a given hierarchical path.

PCI Express limits locked transactions to Traffic Class 0 and Virtual Channel 0.
All transactions with TC values other than zero that are mapped to a VC other
than zero are permitted to traverse the fabric without regard to the locked oper-
ation. All transactions that are mapped to VCO are subject to the lock rules
described in this appendix. The discussion of the locked protocol in this appen-
dix presumes that all transactions have been assigned to TCO (unless otherwise
indicated).

1034

Appendix E: Locked Transaction Series

Lock Messages — The Virtual Lock Signal

PCI Express defines the following transactions that, together, act as a virtual
wire that replaces the PCI LOCK# signal.

Memory Read Lock Request (MRdLk) — Originates a locked sequence.
The first MRdLk transaction blocks other requests from reaching the target
device. One or more of these locked read requests may be issued during the
sequence.

Memory Read Lock Completion with Data (CplDLk) — Returns data and
confirms that the path to the target is locked. A successful read Completion
that returns data for the first Memory Read Lock request results in the path
between the Root Complex and the target device being locked. That is,
transactions traversing the same path from other ports are blocked from
reaching either the root port or the target port. Transactions being routed in
buffers for VC1-VC7 are unaffected by the lock.

Memory Read Lock Completion without Data (CplLK) — A Completion
without a data payload indicates that the lock sequence cannot complete
currently and the path remains unlocked.

Unlock Message — An unlock message is issued by the Root Complex
from the locked root port. This message unlocks the path between the root
port and the target port.

The Lock Protocol Sequence — an Example

This section explains the PCI Express lock protocol by example. The example
includes the following devices:

The Root Complex that initiates the Locked transaction series on behalf of
the host processor.

A Switch in the path between the root port and targeted legacy endpoint.

A PCI Express-to-PCI Bridge in the path to the target.

The target PCI device who's Device Driver initiated the locked RMW.

A PCI Express endpoint is included to describe Switch behavior during
lock.

In this example, the locked operation completes normally. The steps that occur
during the operation are described in the two sections that follow.

1035

PCI Express System Architecture

The Memory Read Lock Operation

Figure E-1 on page 1037 illustrates the first step in the Locked transaction series
(i.e., the initial memory read to obtain the semaphore):

1.

2.

The CPU initiates the locked sequence (a Locked Memory Read) as a result
of a driver executing a locked RMW instruction that targets a PCI target.
The Root Port issues a Memory Read Lock Request from port 2. The Root
Complex is always the source of a locked sequence.

The Switch receives the lock request on its upstream port and forwards the
request to the target egress port (3). The switch, upon forwarding the
request to the egress port, must block all requests from ports other than the
ingress port (1) from being sent from the egress port.

A subsequent peer-to-peer transfer from the illustrated PCI Express end-
point to the PCI bus (switch port 2 to switch port 3) would be blocked until
the lock is cleared. Note that the lock is not yet established in the other
direction. Transactions from the PCI Express endpoint could be sent to the
Root Complex.

The Memory Read Lock Request is sent from the Switch’s egress port to the
PCI Express-to-PCI Bridge. This bridge will implement PCI lock semantics
(See the MindShare book entitled PCI System Architecture, Fourth Edition, for
details regarding PCI lock).

The bridge performs the Memory Read transaction on the PCI bus with the
PCI LOCK# signal asserted. The target memory device returns the
requested semaphore data to the bridge.

Read data is returned to the Bridge and is delivered back to the Switch via a
Memory Read Lock Completion with Data (CplDLKk).

The switch uses ID routing to return the packet upstream towards the host
processor. When the CplDLk packet is forwarded to the upstream port of
the Switch, it establishes a lock in the upstream direction to prevent traffic
from other ports from being routed upstream. The PCI Express endpoint is
completely blocked from sending any transaction to the Switch ports via
the path of the locked operation. Note that transfers between Switch ports
not involved in the locked operation would be permitted (not shown in this
example).

Upon detecting the CplDLk packet, the Root Complex knows that the lock
has been established along the path between it and the target device, and
the completion data is sent to the CPU.

1036

Appendix E: Locked Transaction Series

Figure E-1: Lock Sequence Begins with Memory Read Lock Request

The CPU initiates the
locked memory read to @ C PU

obtain the semaphore

Root Complex

Root Complex receives
CplDLk and returns data

Root Complex issues
the MRdLk Request Ja2al— JKS)

Switch receives MRdLk and
forwards it to the egress port (3).
Switch blocks transactions from

other ports to egress port.

to the upstream port (ID routing
and locks upstream port (1)

[Switch forwards the Completiorj
)

Bridge returns data using
% a CpIDLk transaction

Request targeting a PCI device,
but request is blocked

ECI-XP endpoint issues a MemRd

Bridge support lock based on the
PCl-based requirements

[r‘he Bridge receives the MRdLk.

Target

B=ilez] Performs the PCI Rd transaction

The Bridge asserts LOCK# and
and the target returns the read data

l MRdLk |:| CpIDLk

Read Data Modified and Written to Target and Lock Com-
pletes

The device driver receives the semaphore value, alters it, and then initiates a
memory write to update the semaphore within the memory of the legacy PCI
device. Figure E-2 on page 1038 illustrates the write sequence followed by the
Root Complex’s transmission of the Unlock message that releases the lock:

10. The Root Complex issues the Memory Write Request across the locked path
to the target device.

11. The Switch forwards the transaction to the target egress port (3). The mem-
ory address of the Memory Write must be the same as the initial Memory
Read request.

1037

PCI Express System Architecture

12. The bridge forwards the transaction to the PCI bus.

13. The target device receives the memory write data.

14. Once the Memory Write transaction is sent from the Root Complex, it sends
an Unlock message to instruct the Switches and any PCI/PCI-X bridges in
the locked path to release the lock. Note that the Root Complex presumes
the operation has completed normally (because memory writes are posted
and no Completion is returned to verify success).

15. The Switch receives the Unlock message, unlocks its ports and forwards the
message to the egress port that was locked to notify any other Switches
and/or bridges in the locked path that the lock must be cleared.

16. Upon detecting the Unlock message, the bridge must also release the lock
on the PCI bus.

Figure E-2: Lock Completes with Memory Write Followed by Unlock Message

The CPU initiates the
locked memory write to CPU

update the semaphore

Root Complex

Root Complex sends
Unlock message

Root Complex issues
the Mem Write Request o 3014

Switch receives MemWt and
forwards it to the egress port (3)

Switch receives the Unlock
message and unlocks the

ports in the locked path

Bridge releases PCI lock
due to Unlock message

and performs the locked PCI
memaory write transaction

[The Bridge receives the MemWt

Target Target device receives the
Device PCI write data thereby

completing the operation

I Memi\Wt D Unlock message

1038

PC Programming/Hardware

PI' I Express System Architecture is a high quality and comprehensive must-have

reference for any engineer working with PCI Express. Highly recommended.”

—David Churchill |

- Agilent Technologies

PCI Express is the third-generation Peripheral Component Inter-
connect technology for a wide range of systems and peripheral
devices. Incorporating recent advances in high-speed, point-to-
point interconnects, PCI Express provides significantly higher
performance, reliability, and enhanced capabilities—ar a lower
cost—than the previous PCI and PCI-X standards. Therefore,
anyone working on next-generation PC systems, BIOS and
device driver development, and peripheral device design will
need o have a thorough understanding of PCI Express.

PCI Express System Architecture provides an in-depth
descriprion and comprehensive reference wo the PCI Express
standard. The book contains information needed for design,
verification, and rest, as well as background infarmation
essential for writing low-level BIOS and device drivers. In
addition, it offers valuable insight into the rechnology's
evolution and cutting-edge features,

Following an overview of the PCI Express architecture, the
book moves on to cover transaction protocols, the
physical/electrical layer, power management, configuration,
and more. Specific topics covered include:

Split transaction protocol

Packer formart and definition, including use of cach field
ACK/NAK protocol

Traffic Class and Virtual Channel applications and use
Flow control initializarion and operation

Ertor checking mechanisms and reporting options
Swirch design issues

Advanced Power Management mechanisms and use
Acrive State Link power management

Hort Plug design and operation

Message transactions

Physical layer functions

Electrical signaling characteristics and issues

PCI Express enumeration procedures

Configuration register definitions

€3 Texe printed on recycled paper
vv Addison-Wesley

Pearson Education

Thoughtfully organized, fearuring a plethora of illustrations,
and comprehensive in scope, PCT Express System Architecturve
is an essential resource for anyone working with this impor-

tant technology.

MindShare’s PC System Architecture Series is a crisply writ-
ten and comprehensive ser of guides to the most impaortant
PPC hardware standards. Books in the series are intended for
use by hardware and software designers, programmers, and sup-
port personngl.

MindShare, Inc., is one of the leading technical training com-
panies in the hardware industry, providing innovarive courses
for dozens of companies, including IBM, HE PLX, Sun, and
Texas Instruments,

Ravi Budruk is a senior staff engineer and instructor with
MindShare, Inc., where he has trained hundreds of engineers.
He is an industry expert on such topics as Intel Processor and
PC architecture, as well as such bus architectures as PCI
Express, PCI, PCI-X, HyperTransport, IEEE 1394, and [5A.
Before working ar MindShare, Mr. Budruk was a PC chipset
architect and designer at VLSI Technology, Inc.

Don Anderson is an expert on digial electronics and system
design. He passes on his wealth of experience by training
engineers, programmers, and technicians at MindShare, Inc.,
and is the author of numerous MindShare hooks.

Tom Shanley is President of MindShare, Inc., and one of the
world's foremost authorities on computer system architecture,

www.informit.com/faw
www.mindshare.com

Carver design by Barhara T, Arkimann
Ciroer photagraph by Taspshiko ShimadaThormmica

Contact www.mindshare.com for Training on This Subject

ISBM-13: 978-0-321-15630-3
ISBN-10: 0-321-15630-7

|I “ il
g UFR0321M156303 |”|HH“|||||

$76.99 U.5./584.99 CANADA

	Part One The Big Picture
	1 Architectural Perspective
	The Role of the Original PCI Solution
	Don’t Throw Away What is Good! Keep It
	Make Improvements for the Future
	Looking into the Future

	Author’s Disclaimer
	Bus Performances and Number of Slots Compared
	PCI Express Aggregate Throughput
	Performance Per Pin Compared
	33 MHz PCI Bus Based System
	Electrical Load Limit of a 33 MHz PCI Bus
	PCI Transaction Model - Programmed IO
	PCI Transaction Model - Peer-to-Peer
	PCI Bus Arbitration
	PCI Delayed Transaction Protocol
	PCI Retry Protocol:
	PCI Disconnect Protocol:

	PCI Interrupt Handling
	PCI Error Handling
	PCI Address Space Map
	PCI Configuration Cycle Generation
	PCI Function Configuration Register Space
	PCI Programming Model
	Limitations of a 33 MHz PCI System
	Latest Generation of Intel PCI Chipsets

	66 MHz PCI Bus Based System
	Limitations of 66 MHz PCI bus
	Limitations of PCI Architecture

	66 MHz and 133 MHz PCI-X 1.0 Bus Based Platforms
	PCI-X Features
	PCI-X Requester/Completer Split Transaction Model

	DDR and QDR PCI-X 2.0 Bus Based Platforms
	The Link - A Point-to-Point Interconnect
	Differential Signaling
	Switches Used to Interconnect Multiple Devices
	Packet Based Protocol
	Bandwidth and Clocking
	Address Space
	PCI Express Transactions
	PCI Express Transaction Model
	Error Handling and Robustness of Data Transfer
	Quality of Service (QoS), Traffic Classes (TCs) and Virtual Channels (VCs)
	Flow Control
	MSI Style Interrupt Handling Similar to PCI-X
	Power Management
	Hot Plug Support
	PCI Compatible Software Model
	Mechanical Form Factors
	PCI-like Peripheral Card and Connector
	Mini PCI Express Form Factor

	Mechanical Form Factors Pending Release
	NEWCARD Form Factor
	Server IO Module (SIOM) Form Factor

	PCI Express Topology
	Enumerating the System

	PCI Express System Block Diagram
	Low Cost PCI Express Chipset
	High-End Server System

	2 Architecture Overview
	PCI Express Transaction Protocol
	Non-Posted Read Transactions
	Non-Posted Read Transaction for Locked Requests
	Non-Posted Write Transactions
	Posted Memory Write Transactions
	Posted Message Transactions

	Some Examples of Transactions
	Memory Read Originated by CPU, Targeting an Endpoint
	Memory Read Originated by Endpoint, Targeting System Memory
	IO Write Initiated by CPU, Targeting an Endpoint
	Memory Write Transaction Originated by CPU and Targeting an Endpoint

	Overview
	Transmit Portion of Device Layers
	Receive Portion of Device Layers

	Device Layers and their Associated Packets
	Transaction Layer Packets (TLPs)
	TLP Packet Assembly
	TLP Packet Disassembly

	Data Link Layer Packets (DLLPs)
	DLLP Assembly
	DLLP Disassembly

	Physical Layer Packets (PLPs)

	Function of Each PCI Express Device Layer
	Device Core / Software Layer
	Transmit Side.
	Receive Side

	Transaction Layer
	Transmit Side.
	Receiver Side
	Flow Control
	Quality of Service (QoS)
	Traffic Classes (TCs) and Virtual Channels (VCs)
	Port Arbitration and VC Arbitration
	Transaction Ordering
	Power Management
	Configuration Registers

	Data Link Layer
	Transmit Side
	Receive Side
	Data Link Layer Contribution to TLPs and DLLPs
	Non-Posted Transaction Showing ACK-NAK Protocol
	Posted Transaction Showing ACK-NAK Protocol
	Other Functions of the Data Link Layer

	Physical Layer
	Transmit Side
	Receive Side
	Link Training and Initialization
	Link Power Management
	Reset
	Electrical Physical Layer

	Memory Read Request Phase
	Completion with Data Phase

	Part Two Transaction Protocol
	3 Address Spaces & Transaction Routing
	Receivers Check For Three Types of Link Traffic
	Multi-port Devices Assume the Routing Burden
	Endpoints Have Limited Routing Responsibilities
	System Routing Strategy Is Programmed
	Ordered Sets
	Data Link Layer Packets (DLLPs)
	TLPs Used to Access Four Address Spaces
	Split Transaction Protocol Is Used
	Split Transactions: Better Performance, More Overhead
	Write Posting: Sometimes a Completion Isn’t Needed

	Three Methods of TLP Routing
	PCI Express Routing Is Compatible with PCI
	PCI Express Adds Implicit Routing for Messages
	Why Were Messages Added to PCI Express Protocol?
	How Implicit Routing Helps with Messages

	Header Fields Define Packet Format and Routing
	Using TLP Header Information: Overview
	General
	Header Type/Format Field Encodings

	Address Routing
	Memory and IO Address Maps
	Key TLP Header Fields in Address Routing
	TLPs with 3DW, 32-Bit Address
	TLPs With 4DW, 64-Bit Address

	An Endpoint Checks an Address-Routed TLP
	A Switch Receives an Address Routed TLP: Two Checks
	General
	Other Notes About Switch Address-Routing

	ID Routing
	ID Bus Number, Device Number, Function Number Limits
	Key TLP Header Fields in ID Routing
	3DW TLP, ID Routing
	4DW TLP, ID Routing

	An Endpoint Checks an ID-Routed TLP
	A Switch Receives an ID-Routed TLP: Two Checks
	Other Notes About Switch ID Routing

	Implicit Routing
	Only Messages May Use Implicit Routing
	Messages May Also Use Address or ID Routing
	Routing Sub-Field in Header Indicates Routing Method
	Key TLP Header Fields in Implicit Routing
	Message Type Field Summary
	An Endpoint Checks a TLP Routed Implicitly
	A Switch Receives a TLP Routed Implicitly

	Routing Configuration Is PCI-Compatible
	Two Configuration Space Header Formats: Type 0, Type 1
	Routing Registers Are Located in Configuration Header

	Base Address Registers (BARs): Type 0, 1 Headers
	General
	BAR Setup Example One: 1MB, Prefetchable Memory Request
	BAR Setup Example Two: 64-Bit, 64MB Memory Request
	BAR Setup Example Three: 256-Byte IO Request

	Base/Limit Registers, Type 1 Header Only
	General
	Prefetchable Memory Base/Limit Registers
	Non-Prefetchable Memory Base/Limit Registers
	IO Base/Limit Registers

	Bus Number Registers, Type 1 Header Only
	Primary Bus Number
	Secondary Bus Number
	Subordinate Bus Number
	A Switch Is a Two-Level Bridge Structure

	4 Packet-Based Transactions
	Why Use A Packet-Based Transaction Protocol
	Packet Formats Are Well Defined
	Framing Symbols Indicate Packet Boundaries
	CRC Protects Entire Packet

	TLPs Are Assembled And Disassembled
	Device Core Requests Access to Four Spaces
	TLP Transaction Variants Defined
	TLP Structure
	Generic TLP Header Format
	Generic Header Field Summary
	Header Type/Format Field Encodings
	The Digest and ECRC Field
	ECRC Generation and Checking
	Who Can Check ECRC?

	Using Byte Enables
	Byte Enable Rules

	Transaction Descriptor Fields
	Transaction ID
	Traffic Class
	Transaction Attributes

	Additional Rules For TLPs With Data Payloads

	Building Transactions: TLP Requests & Completions
	IO Requests
	IO Request Header Format
	Definitions Of IO Request Header Fields

	Memory Requests
	Description of 3DW And 4DW Memory Request Header Fields
	Memory Request Notes

	Configuration Requests
	Definitions Of Configuration Request Header Fields
	Configuration Request Notes

	Completions
	Definitions Of Completion Header Fields
	Summary of Completion Status Codes:
	Calculating The Lower Address Field (Byte 11, bits 7:0):
	Using The Byte Count Modified Bit
	Data Returned For Read Requests:
	Receiver Completion Handling Rules:

	Message Requests
	Definitions Of Message Request Header Fields
	Message Notes:
	INTx Interrupt Signaling
	Power Management Messages
	Error Messages
	Unlock Message
	Slot Power Limit Message
	Hot Plug Signaling Message

	Types Of DLLPs
	DLLPs Are Local Traffic
	Receiver handling of DLLPs
	Sending A Data Link Layer Packet
	Fixed DLLP Packet Size: 8 Bytes

	DLLP Packet Types
	Ack Or Nak DLLP Packet Format
	Definitions Of Ack Or Nak DLLP Fields

	Power Management DLLP Packet Format
	Definitions Of Power Management DLLP Fields

	Flow Control Packet Format
	Definitions Of Flow Control DLLP Fields

	Vendor Specific DLLP Format
	Definitions Of Vendor Specific DLLP Fields

	5 ACK/NAK Protocol
	Transmitter Elements of the ACK/NAK Protocol
	Replay Buffer
	NEXT_TRANSMIT_SEQ Counter
	LCRC Generator
	REPLAY_NUM Count
	REPLAY_TIMER Count
	ACKD_SEQ Count
	DLLP CRC Check

	Receiver Elements of the ACK/NAK Protocol
	Receive Buffer
	LCRC Error Check
	NEXT_RCV_SEQ Count
	Sequence Number Check
	NAK_SCHEDULED Flag
	ACKNAK_LATENCY_TIMER
	ACK/NAK DLLP Generator

	Transmitter Protocol Details
	Sequence Number
	32-Bit LCRC
	Replay (Retry) Buffer
	General
	Replay Buffer Sizing

	Transmitter’s Response to an ACK DLLP
	General
	Purging the Replay Buffer

	Examples of Transmitter ACK DLLP Processing
	Example 1
	Example 2

	Transmitter’s Response to a NAK DLLP
	TLP Replay
	Efficient TLP Replay
	Example of Transmitter NAK DLLP Processing
	Repeated Replay of TLPs
	What Happens After the Replay Number Rollover?

	Transmitter’s Replay Timer
	REPLAY_TIMER Equation
	REPLAY_TIMER Summary Table

	Transmitter DLLP Handling

	Receiver Protocol Details
	TLP Received at Physical Layer
	Received TLP Error Check
	Next Received TLP’s Sequence Number
	Receiver Schedules An ACK DLLP
	Example of Receiver ACK Scheduling
	NAK Scheduled Flag
	Receiver Schedules a NAK
	Receiver Sequence Number Check
	Receiver Preserves TLP Ordering
	Example of Receiver NAK Scheduling
	Receivers ACKNAK_LATENCY_TIMER
	ACKNAK_LATENCY_TIMER Equation
	ACKNAK_LATENCY_TIMER Summary Table

	Transmitter Side
	Non-Error Case (ACK DLLP Management)
	Error Case (NAK DLLP Management)

	Receiver Side
	Non-Error Case
	Error Case

	Lost TLP
	Lost ACK DLLP or ACK DLLP with CRC Error
	Lost ACK DLLP followed by NAK DLLP
	Without Cut-Through Mode
	Background
	Possible Solution

	Switch Cut-Through Mode
	Background
	Example That Demonstrates Switch Cut-Through Feature

	6 QoS/TCs/VCs and Arbitration
	Isochronous Transaction Support
	Synchronous Versus Isochronous Transactions
	Isochronous Transaction Management

	Differentiated Services
	VC Assignment and TC Mapping
	Determining the Number of VCs to be Used
	Assigning VC Numbers (IDs)
	Assigning TCs to each VC - TC/VC Mapping

	Virtual Channel Arbitration
	Strict Priority VC Arbitration
	Low- and High-Priority VC Arbitration
	Hardware Fixed Arbitration Scheme
	Weighted Round Robin Arbitration Scheme

	Round Robin Arbitration (Equal or Weighted) for All VCs
	Loading the Virtual Channel Arbitration Table
	VC Arbitration within Multiple Function Endpoints

	Port Arbitration
	The Port Arbitration Mechanisms
	Non-Configurable Hardware-Fixed Arbitration
	Weighted Round Robin Arbitration
	Time-Based, Weighted Round Robin Arbitration

	Loading the Port Arbitration Tables

	Switch Arbitration Example

	7 Flow Control
	VC Flow Control Buffer Organization
	Flow Control Credits
	Maximum Flow Control Buffer Size
	The Flow Control Elements
	Transmitter Elements
	Receiver Elements

	Stage 1 - Flow Control Following Initialization
	Stage 2 - Flow Control Buffer Fills Up
	Stage 3 - The Credit Limit count Rolls Over
	Stage 4 - FC Buffer Overflow Error Check
	Who Advertises Infinite Flow Control Credits?
	Special Use for Infinite Credit Advertisements.
	Header and Data Advertisements May Conflict
	The FC Initialization Sequence
	FC Init1 Packets Advertise Flow Control Credits Available
	FC Init2 Packets Confirm Successful FC Initialization
	Rate of FC_INIT1 and FC_INIT2 Transmission
	Violations of the Flow Control Initialization Protocol

	FC_Update DLLP Format and Content
	Flow Control Update Frequency
	Immediate Notification of Credits Allocated
	Maximum Latency Between Update Flow Control DLLPs
	Calculating Update Frequency Based on Payload Size and Link Width

	Error Detection Timer - A Pseudo Requirement

	8 Transaction Ordering
	Producer/Consumer Model with Native Devices
	RO Effects on Memory Writes and Messages
	RO Effects on Memory Read Transactions
	Summary of Strong Ordering Rules
	Strong Ordering Can Result in Transaction Blocking
	The Problem
	The Weakly Ordered Solution

	Order Management Accomplished with VC Buffers
	Summary of Modified Ordering Rules

	9 Interrupts
	The MSI Capability Register Set
	Capability ID
	Pointer To Next New Capability
	Message Control Register
	Message Address Register
	Message Data Register

	Basics of MSI Configuration
	Basics of Generating an MSI Interrupt Request
	Memory Write Transaction (MSI)
	Multiple Messages

	Memory Synchronization When Interrupt Handler Entered
	The Problem
	Solving the Problem

	Interrupt Latency
	MSI Results In ECRC Error

	Some Rules, Recommendations, etc.
	Background - PCI Interrupt Signaling
	Device INTx# Pins
	Determining if a Function Uses INTx# Pins
	Interrupt Routing
	Associating the INTx# Line to an IRQ Number
	INTx# Signaling
	Interrupt Disable
	Interrupt Status

	Virtual INTx Signaling
	Virtual INTx Wire Delivery
	Collapsing INTx Signals within a Bridge
	INTx Message Format

	Example System

	10 Error Detection and Handling
	PCI Express Error Checking Mechanisms
	Transaction Layer Errors
	Data Link Layer Errors
	Physical Layer Errors

	Error Reporting Mechanisms
	Error Handling Mechanisms
	ECRC Generation and Checking
	Data Poisoning (Optional)
	TC to VC Mapping Errors
	Link Flow Control-Related Errors
	Malformed Transaction Layer Packet (TLP)
	Split Transaction Errors
	Unsupported Request
	Completer Abort
	Unexpected Completion
	Completion Time-out

	Correctable Errors
	Uncorrectable Non-Fatal Errors
	Uncorrectable Fatal Errors
	Error Messages
	Completion Status
	PCI-Compatible Error Reporting Mechanisms
	Configuration Command and Status Registers

	PCI Express Baseline Error Handling
	Enabling/Disabling Error Reporting
	Enabling Error Reporting - Device Control Register
	Error Status - Device Status Register

	Link Errors
	Root’s Response to Error Message

	ECRC Generation and Checking
	Handling Sticky Bits
	Advanced Correctable Error Handling
	Advanced Correctable Error Status
	Advanced Correctable Error Reporting

	Advanced Uncorrectable Error Handling
	Advanced Uncorrectable Error Status
	Selecting the Severity of Each Uncorrectable Error
	Uncorrectable Error Reporting

	Error Logging
	Root Complex Error Tracking and Reporting
	Root Complex Error Status Registers
	Advanced Source ID Register
	Root Error Command Register
	Reporting Errors to the Host System

	Part Three The Physical Layer
	11 Physical Layer Logic
	Disclaimer
	Transmit Logic Overview
	Receive Logic Overview
	Physical Layer Link Active State Power Management
	Link Training and Initialization
	Tx Buffer
	Multiplexer (Mux) and Mux Control Logic
	General
	Definition of Characters and Symbols

	Byte Striping (Optional)
	Packet Format Rules
	General Packet Format Rules
	x1 Packet Format Example
	x4 Packet Format Rules
	x4 Packet Format Example
	x8, x12, x16 or x32 Packet Format Rules
	x8 Packet Format Example

	Scrambler
	Purpose of Scrambling Outbound Transmission
	Scrambler Algorithm
	Some Scrambler implementation rules:
	Disabling Scrambling

	8b/10b Encoding
	General
	Purpose of Encoding a Character Stream
	Properties of 10-bit (10b) Symbols
	Preparing 8-bit Character Notation
	Disparity
	Definition
	Two Categories of 8-bit Characters
	CRD (Current Running Disparity)

	8b/10b Encoding Procedure
	Example Encodings
	Example Transmission

	The Lookup Tables
	Control Character Encoding
	Ordered-Sets
	General
	TS1 and TS2 Ordered-Sets
	SKIP Ordered-Set
	Electrical Idle Ordered-Set
	FTS Ordered-Set

	Parallel-to-Serial Converter (Serializer)
	Differential Transmit Driver
	Transmit (Tx) Clock
	Other Miscellaneous Transmit Logic Topics
	Logical Idle Sequence
	Inserting Clock Compensation Zones
	Background
	SKIP Ordered-Set Insertion Rules

	Differential Receiver
	Rx Clock Recovery
	General
	Achieving Bit Lock
	Losing Bit Lock
	Regaining Bit Lock

	Serial-to-Parallel converter (Deserializer)
	Symbol Boundary Sensing (Symbol Lock)
	Receiver Clock Compensation Logic
	Background
	The Elastic Buffer’s Role in the Receiver

	Lane-to-Lane De-Skew
	Not a Problem on a Single-Lane Link
	Flight Time Varies from Lane-to-Lane
	If Lane Data Is Not Aligned, Byte Unstriping Wouldn’t Work
	TS1/TS2 or FTS Ordered-Sets Used to De-Skew Link
	De-Skew During Link Training, Retraining and L0s Exit
	Lane-to-Lane De-Skew Capability of Receiver

	8b/10b Decoder
	General
	Disparity Calculator
	Code Violation and Disparity Error Detection
	General
	Code Violations

	Disparity Errors

	De-Scrambler
	Some De-Scrambler Implementation Rules:
	Disabling De-Scrambling

	Byte Un-Striping
	Filter and Packet Alignment Check
	Receive Buffer (Rx Buffer)
	Response of Data Link Layer to ‘Receiver Error’ Indication

	12 Electrical Physical Layer
	Clock Requirements
	General
	Spread Spectrum Clocking (SSC)

	Impedance and Termination
	Transmitter Impedance Requirements
	Receiver Impedance Requirements

	DC Common Mode Voltages
	Transmitter DC Common Mode Voltage
	Receiver DC Common Mode Voltage

	ESD and Short Circuit Requirements
	Receiver Detection
	General
	With a Receiver Attached
	Without a Receiver Attached
	Procedure To Detect Presence or Absence of Receiver

	Differential Drivers and Receivers
	Advantages of Differential Signaling
	Differential Voltages
	Differential Voltage Notation
	General
	Differential Peak Voltage
	Differential Peak-to-Peak Voltage
	Common Mode Voltage

	Electrical Idle
	Transmitter Responsibility
	Receiver Responsibility
	Power Consumed When Link Is in Electrical Idle State
	Electrical Idle Exit

	Transmission Line Loss on Link
	AC Coupling
	De-Emphasis (or Pre-Emphasis)
	What is De-Emphasis?
	What is the Problem Addressed By De-emphasis?
	Solution

	Beacon Signaling
	General
	Properties of the Beacon Signal

	Jitter, Noise, and Signal Attenuation
	The Eye Test
	Optimal Eye
	Jitter Widens or Narrows the Eye Sideways
	Noise and Signal Attenuation Heighten the Eye
	General
	Transmit Driver Compliance Test and Measurement Load

	13 System Reset
	Fundamental Reset
	Methods of Signaling Fundamental Reset
	PERST# Type Fundamental Reset Generation
	Autonomous Method of Fundamental Reset Generation

	In-Band Reset or Hot Reset
	Response to Receiving a Hot Reset Command
	Switches Generate Hot Reset on Their Downstream Ports
	Bridges Forward Hot Reset to the Secondary Bus
	How Does Software Tell a Device (e.g. Switch or Root Com plex) to Generate Hot Reset?
	Device Signals Wakeup
	Power Management Software Generates Wakeup Event

	14 Link Initialization & Training
	General
	TS1 and TS2 Ordered-Sets
	Electrical Idle Ordered-Set
	FTS Ordered-Set
	SKIP Ordered-Set
	General
	Overview of LTSSM States
	Detect State
	Detect.Quiet SubState
	Detect.Active SubState

	Polling State
	Introduction
	Polling.Active SubState
	Polling.Configuration SubState
	Polling.Compliance SubState
	Polling.Speed SubState

	Configuration State
	General
	Configuration.RcvrCfg SubState
	Configuration.Idle SubState
	Designing Devices with Links that can be Merged
	General
	Four-x2 Configuration
	Two-x4 Configuration

	Examples That Demonstrate Configuration.RcvrCfg Function
	RcvrCfg Example 1
	Link Number Negotiation
	Lane Number Negotiation
	Confirmation of Link Number and Lane Number Negotiated

	RcvrCfg Example 2
	Link Number Negotiation:
	Lane Number Negotiation
	Confirmation of Link Number and Lane Number Negotiated

	RcvrCfg Example 3
	Link Number Negotiation
	Lane Number Negotiation
	Confirmation of Link Number and Lane Number Negotiated

	Recovery State
	Reasons that a Device Enters the Recovery State
	Initiating the Recovery Process
	Recovery.RcvrLock SubState
	Recovery.RcvrCfg SubState
	Recovery.Idle SubState

	L0 State
	L0s State
	L0s Transmitter State Machine
	Tx_L0s.Entry SubState
	Tx_L0s.Idle SubState
	Tx_L0s.FTS SubState

	L0s Receiver State Machine
	Rx_L0s.Entry SubState
	Rx_L0s.Idle SubState
	Rx_L0s.FTS SubState

	L1 State
	L1.Entry SubState
	L1.Idle SubState

	L2 State
	L2.Idle SubState
	L1.TransmitWake SubState

	Hot Reset State
	Disable State
	Loopback State
	Loopback.Entry SubState
	Loopback.Active SubState
	Loopback.Exit SubState

	Link Capability Register
	Maximum Link Speed[3:0]
	Maximum Link Width[9:4]

	Link Status Register
	Link Speed[3:0]:
	Negotiate Link Width[9:4]
	Training Error[10]
	Link Training[11]

	Link Control Register
	Link Disable
	Retrain Link
	Extended Synch

	Part Four Power-Related Topics
	15 Power Budgeting
	Expansion Port Delivers Slot Power Limit
	Expansion Device Limits Power Consumption

	16 Power Management
	Basics of PCI PM
	OnNow Design Initiative Scheme Defines Overall PM
	Goals
	System PM States
	Device PM States
	Definition of Device Context
	General
	PM Event (PME) Context

	Device Class-Specific PM Specifications
	Default Device Class Specification
	Device Class-Specific PM Specifications

	Power Management Policy Owner
	General
	In Windows OS Environment

	PCI Express Power Management vs. ACPI
	PCI Express Bus Driver Accesses PCI Express Configuration and PM Registers
	ACPI Driver Controls Non-Standard Embedded Devices
	Some Example Scenarios
	Scenario-OS Wishes To Power Down PCI Express Devices
	Scenario-Restore All Functions To Powered Up State
	Scenario-Setup a Function-Specific System WakeUp Event

	The PM Capability Register Set
	Device PM States
	D0 State-Full On
	Mandatory.
	D0 Uninitialized
	D0 Active

	D1 State-Light Sleep
	D2 State-Deep Sleep
	D3-Full Off
	D3Cold State

	Function PM State Transitions

	Detailed Description of PCI-PM Registers
	PM Capabilities (PMC) Register
	PM Control/Status (PMCSR) Register
	Data Register
	Determining Presence of the Data Register
	Operation of the Data Register
	Multi-Function Devices
	Virtual PCI-to-PCI Bridge Power Data

	L0s State
	Entry into L0s
	Entry into L0s Triggered by Link Idle Time
	Flow Control Credits Must be Delivered
	Transmitter Initiates Entry to L0s

	Exit from L0s State
	Transmitter Initiates L0s Exit
	Actions Taken by Switches that Receive L0s Exit

	L1 ASPM State
	Downstream Component Decides to Enter L1 ASPM
	Negotiation Required to Enter L1 ASPM
	Scenario 1: Both Ports Ready to Enter L1 ASPM State
	Downstream Component Issues Request to Enter L1 State
	Upstream Component Requirements to Enter L1 ASPM
	Upstream Component Acknowledges Request to Enter L1
	Downstream Component Detects Acknowledgement
	Upstream Component Receives Electrical Idle

	Scenario 2: Upstream Component Transmits TLP Just Prior to Receiving L1 Request
	TLP Must Be Accepted by Downstream Component
	Upstream Component Receives Request to Enter L1

	Exit from L1 ASPM State
	L1 ASPM Exit Signaling
	Switch Receives L1 Exit from Downstream Component
	Switch Receives L1 Exit from Upstream Component

	ASPM Exit Latency
	Reporting a Valid ASPM Exit Latency
	L0s Exit Latency Update
	L1 Exit Latency Update

	Calculating Latency Between Endpoint to Root Complex

	D1/D2/D3Hot and the L1 State
	Entering the L1 State
	Exiting the L1 State
	Upstream Component Initiates L1 to L0 Transition
	Downstream Component Initiates L1 to L0 Transition
	The L1 Exit Protocol

	L2/L3 Ready - Removing Power from the Link
	L2/L3 Ready Handshake Sequence
	Exiting the L2/L3 Ready State - Clock and Power Removed
	The L2 State
	The L3 State

	The PME Message
	The PME Sequence
	PME Message Back Pressure Deadlock Avoidance
	Background
	The Problem
	The Solution

	The PME Context
	Waking Non-Communicating Links
	Beacon
	WAKE# (AUX Power)

	Auxiliary Power

	Part Five Optional Topics
	17 Hot Plug
	Surprise Removal Notification
	Differences between PCI and PCI Express Hot Plug
	Software Elements
	Hardware Elements
	On and Off States
	Definition of On and Off
	Turning Slot Off
	Turning Slot On

	Card Removal Procedure
	Attention Button Used to Initiate Hot Plug Removal
	Hot Plug Removal Request Issued via User Interface

	Card Insertion Procedure
	Card Insertion Initiated by Pressing Attention Button
	Card Insertion Initiated by User Interface

	Background
	Standard User Interface
	Attention Indicator
	Power Indicator
	Manually Operated Retention Latch and Sensor
	Electromechanical Interlock (optional)
	Software User Interface
	Attention Button
	Slot Numbering Identification

	Slot Capabilities
	Slot Power Limit Control

	Slot Control
	Slot Status and Events Management
	Card Slot vs Server IO Module Implementations
	Detecting Module and Blade Capabilities
	Hot Plug Messages
	Attention and Power Indicator Control Messages
	Attention Button Pressed Message
	Limitations of the Hot Plug Messages

	Physical Slot ID
	General
	Pausing a Driver (Optional)
	Quiescing a Driver That Controls Multiple Devices
	Quiescing a Failed Card

	18 Add-in Cards and Connectors
	Add-in Connector
	Auxiliary Signals
	General
	Reference Clock
	PERST#
	WAKE#
	SMBus
	JTAG
	PRSNT Pins

	Electrical Requirements
	Power Supply Requirements
	Power Dissipation Limits

	Add-in Card Interoperability
	General
	Server IO Module (SIOM)
	Riser Card
	Mini PCI Express Card
	NEWCARD form factor

	Part Six PCI Express Configuration
	19 Configuration Overview
	Introduction
	Function Configuration Space
	PCI-Compatible Space
	PCI Express Extended Configuration Space

	Only the Root Complex Can Originate Configuration Transactions
	Configuration Transactions Only Move DownStream
	No Peer-to-Peer Configuration Transactions

	20 Configuration Mechanisms
	Background
	PCI-Compatible Configuration Mechanism Description
	General
	Configuration Address Port
	Bus Compare and Data Port Usage
	Target Bus = 0
	Bus Number < Target Bus £ Subordinate Bus Number

	Single Host/PCI Bridge
	Multiple Host/PCI Bridges

	Description
	Some Rules
	What’s Going On During Initialization Time?
	Definition of Initialization Period In PCI
	Definition of Initialization Period In PCI-X
	PCI Express and Initialization Time
	Initial Configuration Access Failure Timeout
	Delay Prior To Initial Configuration Access to Device
	A Device With a Lengthy Self-Initialization Period

	RC Response To CRS Receipt During Run-Time

	21 PCI Express Enumeration
	Operational Characteristics of the PCI-Compatible Mechanism
	Operational Characteristics of the Enhanced Configuration Mechanism
	The Enumeration Process
	A Multifunction Device Within a Root Complex
	A Multifunction Device Within a Switch
	General
	Root Complex Bus Number/Device Number Assignment
	Initiating Requests Prior To ID Assignment
	Initiating Completions Prior to ID Assignment
	What Problem Does an RCRB Address?
	Additional Information on RCRBs
	A Split Configuration Transaction Requires a Single Completion
	An Issue For PCI Express-to-PCI or -PCI-X Bridges
	PCI Special Cycle Transactions

	22 PCI Compatible Configuration Registers
	General
	Header Type 0 Registers Compatible With PCI
	Header Type 0 Registers Incompatible With PCI
	Registers Used to Identify Device’s Driver
	Vendor ID Register
	Device ID Register
	Revision ID Register
	Class Code Register
	General
	The Programming Interface Byte
	Detailed Class Code Description

	Subsystem Vendor ID and Subsystem ID Registers
	General
	The Problem Solved by This Register Pair
	Must Contain Valid Data When First Accessed

	Header Type Register
	BIST Register
	Capabilities Pointer Register
	Configuration Header Space Not Large Enough
	Discovering That Capabilities Exist
	What the Capabilities List Looks Like

	CardBus CIS Pointer Register
	Expansion ROM Base Address Register
	Command Register
	Status Register
	Cache Line Size Register
	Master Latency Timer Register
	Interrupt Line Register
	Usage In a PCI Function
	Usage In a PCI Express Function

	Interrupt Pin Register
	Usage In a PCI Function
	Usage In a PCI Express Function

	Base Address Registers
	Introduction
	IO Space Usage
	Memory Base Address Register
	Decoder Width Field
	Prefetchable Attribute Bit
	Base Address Field

	IO Base Address Register
	Introduction
	IO BAR Description
	PC-Compatible IO Decoder
	Legacy IO Decoders

	Finding Block Size and Assigning Address Range
	How It Works
	A Memory Example
	An IO Example

	Smallest/Largest Decoder Sizes
	Smallest/Largest Memory Decoders
	Smallest/Largest IO Decoders

	Byte Merging
	Bridge Must Discard Unconsumed Prefetched Data

	Min_Gnt/Max_Lat Registers
	General
	Header Type 1 Registers Compatible With PCI
	Header Type 1 Registers Incompatible With PCI
	Terminology
	Bus Number Registers
	Introduction
	Primary Bus Number Register
	Secondary Bus Number Register
	Subordinate Bus Number Register
	Bridge Routes ID Addressed Packets Using Bus Number Registers

	Vendor ID Register
	Device ID Register
	Revision ID Register
	Class Code Register
	Header Type Register
	BIST Register
	Capabilities Pointer Register
	Basic Transaction Filtering Mechanism
	Bridge’s Memory, Register Set and Device ROM
	Introduction
	Base Address Registers
	Expansion ROM Base Address Register

	Bridge’s IO Filter
	Introduction
	Bridge Doesn’t Support Any IO Space Behind Bridge
	Bridge Supports 64KB IO Space Behind Bridge
	Bridge Supports 4GB IO Space Behind Bridge

	Bridge’s Prefetchable Memory Filter
	An Important Note From the Authors
	In PCI
	In PCI Express
	Spec References To Prefetchable Memory

	Characteristics of Prefetchable Memory Devices
	Multiple Reads Yield the Same Data
	Byte Merging Permitted In the Posted Write Buffer

	Characteristics of Memory-Mapped IO Devices
	Read Characteristics
	Write Characteristics

	Determining If Memory Is Prefetchable or Not
	Bridge Support For Downstream Prefetchable Memory Is Optional
	Must Support > 4GB Prefetchable Memory On Secondary Side
	Rules for Bridge Prefetchable Memory Accesses

	Bridge’s Memory-Mapped IO Filter
	Bridge Command Registers
	Introduction
	Bridge Command Register
	Bridge Control Register

	Bridge Status Registers
	Introduction
	Bridge Status Register (Primary Bus)
	Bridge Secondary Status Register

	Bridge Cache Line Size Register
	Bridge Latency Timer Registers
	Bridge Latency Timer Register (Primary Bus)
	Bridge Secondary Latency Timer Register

	Bridge Interrupt-Related Registers
	Interrupt Line Register
	Interrupt Pin Register

	AGP Capability
	AGP Status Register
	AGP Command Register

	Vital Product Data (VPD) Capability
	Introduction
	It’s Not Really Vital
	What Is VPD?
	Where Is the VPD Really Stored?
	VPD On Cards vs. Embedded PCI Devices
	How Is VPD Accessed?
	Reading VPD Data
	Writing VPD Data
	Rules That Apply To Both Read and Writes

	VPD Data Structure Made Up of Descriptors and Keywords
	VPD Read-Only Descriptor (VPD-R) and Keywords
	Is Read-Only Checksum Keyword Mandatory?
	VPD Read/Write Descriptor (VPD-W) and Keywords
	Example VPD List

	Introduction To Chassis/Slot Numbering Registers
	Chassis and Slot Number Assignment
	Problem: Adding/Removing Bridge Causes Buses to Be Renumbered
	If Buses Added/Removed, Slot Labels Must Remain Correct
	Definition of a Chassis
	Chassis/Slot Numbering Registers
	PCI-Compatible Chassis/Slot Numbering Register Set
	Express-Specific Slot-Related Registers

	Two Examples
	First Example
	Second Example

	23 Expansion ROMs
	Multiple Code Images
	Format of a Code Image
	General
	ROM Header Format
	ROM Data Structure Format
	ROM Signature
	Vendor ID field in ROM data structure
	Device ID in ROM data structure
	Pointer to Vital Product Data (VPD)
	PCI Data Structure Length
	PCI Data Structure Revision
	Class Code
	Image Length
	Revision Level of Code/Data
	Code Type
	Indicator Byte

	Introduction
	Universal Device Driver Format
	Passing Resource List To Plug-and-Play OS
	BIOS Calls Bus Enumerators For Different Bus Environments
	BIOS Selects Boot Devices and Finds Drivers For Them
	BIOS Boots Plug-and-Play OS and Passes Pointer To It
	OS Locates and Loads Drivers and Calls Init Code In Each

	24 Express-Specific Configuration Registers
	Introduction
	Required Registers
	General
	PCI Express Capability ID Register
	Next Capability Pointer Register
	PCI Express Capabilities Register
	Device Capabilities Register
	Device Control Register
	Device Status Register
	Link Registers (Required)
	Link Capabilities Register
	Link Control Register
	Link Status Register

	Slot Registers
	Introduction
	Slot Capabilities Register
	Slot Control Register
	Slot Status Register

	Root Port Registers
	Introduction
	Root Control Register
	Root Status Register

	General
	Advanced Error Reporting Capability
	General
	Detailed Description

	Virtual Channel Capability
	The VC Register Set’s Purpose
	Who Must Implement This Register Set?
	Multifunction Upstream Port Restriction
	The Register Set
	Detailed Description of VCs
	Port VC Capability Register 1
	Port VC Capability Register 2
	Port VC Control Register
	Port VC Status Register
	VC Resource Registers
	General
	VC Resource Capability Register
	VC Resource Control Register
	VC Resource Status Register

	VC Arbitration Table
	Port Arbitration Tables

	Device Serial Number Capability
	Power Budgeting Capability
	General
	How It Works

	General
	Firmware Gives OS Base Address of Each RCRB
	Misaligned or Locked Accesses To an RCRB
	Extended Capabilities in an RCRB
	The RCRB Missing Link

	Appendices
	Appendix B Markets & Applications for the PCI Express™ Architecture
	Desktop Systems
	Server Systems

	Appendix C
	Intelligent Adapters
	Host Failover
	Multiprocessor Systems
	Example: Implementing Intelligent Adapters in a PCI Express Base System
	Example: Implementing Host Failover in a PCI Express System
	Example: Implementing Dual Host in a PCI Express Base System
	Direct Address Translation
	Lookup Table Based Address Translation
	Downstream BAR Limit Registers
	Forwarding 64bit Address Memory Transactions

	Appendix D Class Codes
	Appendix E Locked Transactions Series
	Lock Messages - The Virtual Lock Signal
	The Lock Protocol Sequence - an Example
	The Memory Read Lock Operation
	Read Data Modified and Written to Target and Lock Com pletes

	Notification of an Unsuccessful Lock
	Rules Related To the Initiation and Propagation of Locked Transactions
	Rules Related to Switches
	Rules Related To PCI Express/PCI Bridges
	Rules Related To the Root Complex
	Rules Related To Legacy Endpoints
	Rules Related To PCI Express Endpoints

