
Questa™ SV/AFV Tutorial

Software Version 6.4c

© 1991-2008 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely
at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation

8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
Telephone: 503.685.7000

Toll-Free Telephone: 800.592.2210
Website: www.mentor.com

SupportNet: supportnet.mentor.com/
Send Feedback on Documentation: supportnet.mentor.com/user/feedback_form.cfm

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other third parties. No one is permitted to use these Marks without the
prior written consent of Mentor Graphics or the respective third-party owner. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/terms_conditions/trademarks.cfm.

http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/user/feedback_form.cfm
http://www.mentor.com/terms_conditions/trademarks.cfm

Questa SV/AFV Tutorial, v6.4c 3

Table of Contents

Chapter 1
Introduction. 15

Assumptions. 15
Where to Find Our Documentation . 15

Download a Free PDF Reader With Search . 16
Mentor Graphics Support. 16
Before you Begin . 17

Example Designs . 17

Chapter 2
Conceptual Overview . 19

Design Optimizations. 19
Basic Simulation Flow. 19
Project Flow. 20
Multiple Library Flow . 21
Debugging Tools . 22

Chapter 3
Basic Simulation . 25

Create the Working Design Library. 26
Run the Simulation . 30
Set Breakpoints and Step through the Source . 32
Navigating the Interface. 35

Chapter 4
Projects. 41

Create a New Project . 41
Add Objects to the Project . 42
Changing Compile Order (VHDL) . 44
Compile the Design. 45
Load the Design . 46

Organizing Projects with Folders. 47
Add Folders. 47
Moving Files to Folders . 49

Simulation Configurations . 50

Chapter 5
Working With Multiple Libraries. 55

Creating the Resource Library . 55
Creating the Project . 57
Linking to the Resource Library . 58

Table of Contents

4 Questa SV/AFV Tutorial, v6.4c

Linking in Verilog. 59
Linking in VHDL . 60

Permanently Mapping VHDL Resource Libraries . 62

Chapter 6
Simulating Designs With SystemC . 65

Setting up the Environment . 66
Preparing an OSCI SystemC design . 66
Compiling a SystemC-only Design . 70
Mixed SystemC and HDL Example . 70
Viewing SystemC Objects in the GUI . 74

Setting Breakpoints and Stepping in the Source Window . 75
Examining SystemC Objects and Variables . 77
Removing a Breakpoint . 79

Chapter 7
Analyzing Waveforms . 81

Loading a Design . 82
Add Objects to the Wave Window . 82
Zooming the Waveform Display . 84
Using Cursors in the Wave Window . 84

Working with a Single Cursor . 85
Working with Multiple Cursors . 86

Saving and Reusing the Window Format . 87

Chapter 8
Creating Stimulus With Waveform Editor . 89

Load a Design Unit . 89
Create Graphical Stimulus with a Wizard . 90
Edit Waveforms in the Wave Window . 93
Save and Reuse the Wave Commands. 96
Exporting the Created Waveforms. 97
Simulating with the Testbench File . 98
Importing an EVCD File . 100

Chapter 9
Debugging With The Dataflow Window. 103

Exploring Connectivity . 104
Tracing Events . 106
Tracing an X (Unknown) . 110
Displaying Hierarchy in the Dataflow Window . 112

Chapter 10
Viewing And Initializing Memories . 115

View a Memory and its Contents. 116
Navigate Within the Memory . 119

Export Memory Data to a File . 121

Table of Contents

Questa SV/AFV Tutorial, v6.4c 5

Initialize a Memory . 123
Interactive Debugging Commands . 126

Chapter 11
Analyzing Performance With The Profiler . 131

View Profile Details. 136
Filtering and Saving the Data . 137

Chapter 12
Simulating With Code Coverage . 141

Coverage Statistics in the Main window . 145
Coverage Statistics in the Source Window . 146
Toggle Statistics in the Objects Pane. 148
Excluding Lines and Files from Coverage Statistics . 149
Creating Code Coverage Reports. 150

Chapter 13
Debugging With PSL Assertions . 153

Compile the Example Design . 153
Load and Run Without Assertions. 154
Using Assertions to Speed Debugging . 155
Debugging the Assertion Failure . 160

Chapter 14
SystemVerilog Assertions and
Functional Coverage. 165

Design Files for this Lesson . 165
Understanding the Interleaver Design . 165
Related Reading . 168

Run the Simulation without Assertions . 168
Run the Simulation with Assertions . 169
Debugging with Assertions . 171
Exploring Functional Coverage . 179
Creating Functional Coverage Reports . 190
Lesson Wrap-Up . 192

Chapter 15
Using the SystemVerilog DPI. 193

Chapter 16
Using SystemVerilog DPI for Data Passing . 203

Mapping Verilog and C . 203

Chapter 17
Comparing Waveforms . 215

Creating the Reference Dataset . 216
Creating the Test Dataset . 216

Table of Contents

6 Questa SV/AFV Tutorial, v6.4c

Comparing the Simulation Runs . 218
Viewing Comparison Data. 219

Comparison Data in the Wave Window . 219
Comparison Data in the List Window . 220

Saving and Reloading Comparison Data . 221

Chapter 18
Automating Simulation . 225

Creating a Simple DO File. 225
Running in Command-Line Mode . 226
Using Tcl with the Simulator. 229

Index

End-User License Agreement

7 Questa SV/AFV Tutorial, v6.4c

List of Examples

Example 14-1. Assertion Property Definition . 173

8 Questa SV/AFV Tutorial, v6.4c

List of Figures

Figure 2-1. Basic Simulation Flow - Overview Lab . 20
Figure 2-2. Project Flow . 21
Figure 2-3. Multiple Library Flow. 22
Figure 3-1. Basic Simulation Flow - Simulation Lab . 25
Figure 3-2. The Create a New Library Dialog. 26
Figure 3-3. work Library in the Workspace. 27
Figure 3-4. Compile Source Files Dialog . 28
Figure 3-5. Verilog Modules Compiled into work Library . 28
Figure 3-6. Workspace sim Tab Displays Design Hierarchy . 29
Figure 3-7. Object Pane Displays Design Objects. 30
Figure 3-8. Using the Popup Menu to Add Signals to Wave Window 31
Figure 3-9. Waves Drawn in Wave Window. 32
Figure 3-10. Setting Breakpoint in Source Window . 33
Figure 3-11. Setting Restart Functions . 34
Figure 3-12. Blue Arrow Indicates Where Simulation Stopped. 34
Figure 3-13. Values Shown in Objects Window . 35
Figure 3-14. Parameter Name and Value in Source Examine Window 35
Figure 3-15. The Main Window . 36
Figure 3-16. Window/Pane Control Icons . 37
Figure 3-17. zooming in on Workspace Pane . 38
Figure 3-18. Panes Rearranged in Main Window . 39
Figure 4-1. Create Project Dialog - Project Lab . 42
Figure 4-2. Adding New Items to a Project . 43
Figure 4-3. Add file to Project Dialog . 43
Figure 4-4. Newly Added Project Files Display a “?” for Status . 44
Figure 4-5. Compile Order Dialog. 45
Figure 4-6. Library Tab with Expanded Library . 46
Figure 4-7. Structure Tab for a Loaded Design . 47
Figure 4-8. Adding New Folder to Project . 48
Figure 4-9. A Folder Within a Project . 48
Figure 4-10. Creating Subfolder . 48
Figure 4-11. A folder with a Sub-folder . 49
Figure 4-12. Changing File Location via the Project Compiler Settings Dialog. 49
Figure 4-13. Simulation Configuration Dialog . 51
Figure 4-14. A Simulation Configuration in the Project Tab . 52
Figure 4-15. Transcript Shows Options for Simulation Configurations 52
Figure 5-1. Creating New Resource Library . 56
Figure 5-2. Compiling into the Resource Library . 57
Figure 5-3. VHDL Simulation Warning Reported in Main Window 59
Figure 5-4. Specifying a Search Library in the Simulate Dialog. 60

List of Figures

Questa SV/AFV Tutorial, v6.4c 9

Figure 5-5. Mapping to the parts_lib Library . 61
Figure 5-6. Adding LIBRARY and USE Statements to the Testbench. 62
Figure 6-1. SystemC Code Before and After Modifications . 68
Figure 6-2. Editing the SystemC Header File.. 69
Figure 6-3. The ringbuf.h File.. 72
Figure 6-4. The test_ringbuf.cpp File . 72
Figure 6-5. The test_ringbuf Design . 73
Figure 6-6. SystemC Objects in the work Library. 74
Figure 6-7. SystemC Objects in the sim Tab of the Workspace . 75
Figure 6-8. Active Breakpoint in a SystemC File . 76
Figure 6-9. Simulation Stopped at Breakpoint . 77
Figure 6-10. Stepping into a Separate File. 77
Figure 6-11. Output of show Command . 78
Figure 6-12. SystemC Primitive Channels in the Wave Window . 79
Figure 7-1. Panes of the Wave Window . 81
Figure 7-2. Undocking the Wave Window . 83
Figure 7-3. Zooming in with the Mouse Pointer . 84
Figure 7-4. Working with a Single Cursor in the Wave Window . 85
Figure 7-5. Renaming a Cursor . 86
Figure 7-6. Interval Measurement Between Two Cursors. 87
Figure 7-7. A Locked Cursor in the Wave Window . 87
Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane 91
Figure 8-2. Create Pattern Wizard . 91
Figure 8-3. Specifying Clock Pattern Attributes . 92
Figure 8-4. The clk Waveform. 92
Figure 8-5. The reset Waveform . 93
Figure 8-6. Edit Insert Pulse Dialog . 93
Figure 8-7. Signal reset with an Inserted Pulse . 94
Figure 8-8. Edit Stretch Edge Dialog. 94
Figure 8-9. Stretching an Edge on the clk Signal. 95
Figure 8-10. Deleting an Edge on the clk Signal . 95
Figure 8-11. The Export Waveform Dialog. 97
Figure 8-12. The counter Waveform Reacts to Stimulus Patterns. 98
Figure 8-13. The export Testbench Compiled into the work Library 99
Figure 8-14. Waves from Newly Created Testbench. 99
Figure 8-15. EVCD File Loaded in Wave Window . 100
Figure 8-16. Simulation results with EVCD File . 101
Figure 9-1. A Signal in the Dataflow Window . 105
Figure 9-2. Expanding the View to Display Connected Processes . 105
Figure 9-3. The test Net Expanded to Show All Drivers. 106
Figure 9-4. The embedded wave viewer pane . 107
Figure 9-5. Signals Added to the Wave Viewer Automatically . 108
Figure 9-6. Cursor in Wave Viewer Marks Last Event . 109
Figure 9-7. Tracing the Event Set . 109
Figure 9-8. A Signal with Unknown Values . 110

List of Figures

10 Questa SV/AFV Tutorial, v6.4c

Figure 9-9. ChaseX Identifies Cause of Unknown on t_out . 111
Figure 9-10. Displaying Hierarchy in the Dataflow Window . 113
Figure 10-1. The mem Tab in the MDI Frame Shows Addresses and Data 117
Figure 10-2. The Memory Display Updates with the Simulation . 117
Figure 10-3. Changing the Address Radix. 118
Figure 10-4. New Address Radix and Line Length . 119
Figure 10-5. Goto Dialog. 119
Figure 10-6. Editing the Address Directly. 120
Figure 10-7. Searching for a Specific Data Value . 120
Figure 10-8. Export Memory Dialog . 122
Figure 10-9. Import Memory Dialog . 124
Figure 10-10. Initialized Memory from File and Fill Pattern . 125
Figure 10-11. Data Increments Starting at Address 251 . 126
Figure 10-12. Original Memory Content . 127
Figure 10-13. Changing Memory Content for a Range of Addresses 127
Figure 10-14. Random Content Generated for a Range of Addresses. 128
Figure 10-15. Changing Memory Contents by Highlighting. 128
Figure 10-16. Entering Data to Change . 129
Figure 10-17. Changed Memory Contents for the Specified Addresses 129
Figure 11-1. Sampling Reported in the Transcript . 133
Figure 11-2. The Profile Window . 134
Figure 11-3. Design Unit Performance Profile . 135
Figure 11-4. Expand the Hierarchical Function Call Tree. 136
Figure 11-5. The Source Window Showing a Line from the Profile Data 136
Figure 11-6. Profile Details of the Function Tcl_Close. 137
Figure 11-7. Profile Details of Function sm_0. 137
Figure 11-8. The Profiler Toolbar . 138
Figure 11-9. The Filtered Profile Data. 138
Figure 11-10. The Profile Report Dialog. 139
Figure 11-11. The calltree.rpt Report . 140
Figure 12-1. Code Coverage Columns in the Main Window Workspace 143
Figure 12-2. Missed Coverage Pane . 143
Figure 12-3. Instance Coverage Pane . 144
Figure 12-4. Details Pane. 144
Figure 12-5. Current Exclusions Pane . 144
Figure 12-6. Right-click a Column Heading to Show Column List 145
Figure 12-7. Coverage Statistics in the Source Window . 147
Figure 12-8. Coverage Numbers Shown by Hovering the Mouse Pointer 148
Figure 12-9. Toggle Coverage in the Objects Pane . 149
Figure 12-10. Excluding a File Using Menus in the Workspace. 150
Figure 12-11. Coverage Text Report Dialog . 151
Figure 12-12. Coverage HTML Report Dialog . 152
Figure 12-13. Coverage Exclusions Report Dialog . 152
Figure 13-1. Transcript After Running Simulation Without Assertions 155
Figure 13-2. Change Assertions Dialog. 157

List of Figures

Questa SV/AFV Tutorial, v6.4c 11

Figure 13-3. Assertion Failure Indicated in Wave Window . 158
Figure 13-4. The Assertion Debug Pane Shows Failed Assertion Details 159
Figure 13-5. Assertion failure indicated in the Analysis pane. 160
Figure 13-6. Source Code for Failed Assertion . 161
Figure 13-7. Examining we_n With Respect to mem_state. 162
Figure 13-8. Dataflow Options Dialog . 163
Figure 13-9. Viewing we_n in the Dataflow Window. 163
Figure 13-10. Finding the Bug in the Source Code . 164
Figure 14-1. Incoming Data. 165
Figure 14-2. Block Diagram of the Inteleaver . 166
Figure 14-3. Block Diagram of the Testbench. 167
Figure 14-4. First Simulation Stops at Error . 169
Figure 14-5. Enabling Assertion Failure Tracking and Action . 170
Figure 14-6. Assertions Set to Break on Failure . 171
Figure 14-7. Assertions in Wave Window. 171
Figure 14-8. Assertion Failure Message in the Transcript. 172
Figure 14-9. Assertions Tab Shows Failure Count . 173
Figure 14-10. Source Pane Pointer Shows Where Simulation Stopped 173
Figure 14-11. The Inverted Red Triangle Indicates an Assertion Failure 174
Figure 14-12. Setting the Radix . 175
Figure 14-13. Diagnosing Assertion Failure in the Wave Window. 176
Figure 14-14. The wadder11 Signal in the Dataflow Window . 177
Figure 14-15. Source Code for the ALWAYS Block . 178
Figure 14-16. Source Code for waddr[11] . 178
Figure 14-17. Covergroup Code . 179
Figure 14-18. Covergroup Bins . 180
Figure 14-19. Covergroup sm_svg. 181
Figure 14-20. Bins for the sm_cvg Covergroup. 182
Figure 14-21. Viewing the Source Code for a Covergroup . 183
Figure 14-22. Source Code for ram_cvg Covergroup . 183
Figure 14-23. Covergroup Instances for ram_cvg . 184
Figure 14-24. Cover Directive for the Interleaver Design. 185
Figure 14-25. Source Code for the Cover Directive . 185
Figure 14-26. Scoreboard Information in the Transcript . 186
Figure 14-27. Covergroup Coverage in the Analysis Window . 187
Figure 14-28. Cover Directive Counts State Transitions. 188
Figure 14-29. Changing the Cover Directive View to Count View 188
Figure 14-30. First Temporal and Count Mode Views of Cover Directive. 189
Figure 14-31. Second Temporal and Count Mode Views of Cover Directive 189
Figure 14-32. Functional Coverage Report Dialog . 190
Figure 14-33. The Functional Coverage Report . 191
Figure 15-1. Source Code for Module test.sv . 194
Figure 15-2. Source Code for the foreign.c File - DPI Lab . 196
Figure 15-3. The sv_YellowLight Function in the test.sv File . 196
Figure 15-4. The sv_WaitForRed Task in the test.sv File . 197

List of Figures

12 Questa SV/AFV Tutorial, v6.4c

Figure 15-5. The sv_RedLight Function in the test.sv File . 197
Figure 15-6. Function Calls in the test.sv File . 198
Figure 15-7. Makefile for Compiling and Running on UNIX or Linux Platforms 198
Figure 15-8. The windows.bat File for Compiling and Running in Windows - DPI Lab . . . 199
Figure 15-9. The light Signal in the Objects Pane . 201
Figure 15-10. The light Signal in the Wave Window . 201
Figure 15-11. Source Code for test.sv . 202
Figure 16-1. Source Code for the foreign.c File - Data Passing Lab. 204
Figure 16-2. Source Code for the test.sv Module . 205
Figure 16-3. Makefile for Compiling and Running on UNIX and Linux Platforms 206
Figure 16-4. The windows.bat File for Compiling and Running in Windows - Data Passing Lab
207
Figure 16-5. Line 12 of test.sv in the Source Window . 209
Figure 16-6. The Value of int_var is Currently 0 . 209
Figure 16-7. The Value of int_var Printed to the Transcript Window 210
Figure 16-8. The Value of bit_var is 0. 210
Figure 16-9. Transcript Shows the Value Returned for bit_var . 210
Figure 16-10. The dpi_types.h File . 211
Figure 16-11. The Transcript Shows the Correct Value of logic X. 213
Figure 17-1. First dialog of the Waveform Comparison Wizard. 218
Figure 17-2. Second dialog of the Waveform Comparison Wizard 218
Figure 17-3. Comparison information in the Workspace and Objects panes 219
Figure 17-4. Comparison objects in the Wave window. 220
Figure 17-5. The compare icons . 220
Figure 17-6. Compare differences in the List window . 221
Figure 17-7. Coverage data saved to a text file . 222
Figure 17-8. Displaying Log Files in the Open dialog . 223
Figure 17-9. Reloading saved comparison data. 223
Figure 18-1. A Dataset in the Main Window Workspace . 228
Figure 18-2. Buttons Added to the Main Window Toolbar. 230

Questa SV/AFV Tutorial, v6.4c 13

List of Tables

Table 1-1. Documentation List . 15
Table 3-1. The Main Window . 36
Table 6-1. Supported Operating Systems for SystemC . 66
Table 11-1. Columns in the Profile Window . 134
Table 12-1. Coverage Icons in the Source Window . 147

List of Tables

14 Questa SV/AFV Tutorial, v6.4c

Questa SV/AFV Tutorial, v6.4c 15

Chapter 1
Introduction

Assumptions
We assume that you are familiar with the use of your operating system. You should also be
familiar with the window management functions of your graphic interface: OpenWindows,
OSF/Motif, CDE, KDE, GNOME, or Microsoft Windows 2000/XP.

We also assume that you have a working knowledge of the language in which your design
and/or testbench is written (i.e., VHDL, Verilog, etc.). Although QuestaSim™ is an excellent
tool to use while learning HDL concepts and practices, this document is not written to support
that goal.

Where to Find Our Documentation
QuestaSim documentation is available from our website at

www.mentor.com/supportnet

or from the tool by selecting Help :

Table 1-1. Documentation List

Document Format How to get it

Installation & Licensing
Guide

PDF Help > PDF Bookcase

HTML and PDF Help > InfoHub

Quick Guide
(command and feature
quick-reference)

PDF Help > PDF Bookcase
and
Help > InfoHub

Tutorial PDF Help > PDF Bookcase

HTML and PDF Help > InfoHub

User’s Manual PDF Help > PDF Bookcase

HTML and PDF Help > InfoHub

Reference Manual PDF Help > PDF Bookcase

HTML and PDF Help > InfoHub

http://www.mentor.com/supportnet

Questa SV/AFV Tutorial, v6.4c16

Introduction
Mentor Graphics Support

Download a Free PDF Reader With Search
QuestaSim PDF documentation requires an Adobe Acrobat Reader for viewing. The Reader is
available without cost from Adobe at

www.adobe.com.

Mentor Graphics Support
Mentor Graphics software support includes software enhancements, technical support, access to
comprehensive online services with SupportNet, and the optional On-Site Mentoring service.
For details, see:

http://supportnet.mentor.com/about/

If you have questions about this software release, please log in to SupportNet. You may search
thousands of technical solutions, view documentation, or open a Service Request online at:

http://supportnet.mentor.com/

If your site is under current support and you do not have a SupportNet login, you may easily
register for SupportNet by filling out the short form at:

http://supportnet.mentor.com/user/register.cfm

All customer support contact information can be found on our web site at:

http://supportnet.mentor.com/contacts/supportcenters/

Foreign Language
Interface Manual

PDF Help > PDF Bookcase

HTML Help > InfoHub

Command Help ASCII type help [command name] at the prompt in
the Transcript pane

Error message help ASCII type verror <msgNum> at the Transcript or
shell prompt

Tcl Man Pages (Tcl
manual)

HTML select Help > Tcl Man Pages, or find
contents.htm in \modeltech\docs\tcl_help_html

Technotes HTML available from the support site

Table 1-1. Documentation List

Document Format How to get it

http://www.adobe.com
http://supportnet.mentor.com/about/
http://supportnet.mentor.com/
http://supportnet.mentor.com/user/register.cfm
http://supportnet.mentor.com/contacts/supportcenters/

Introduction
Before you Begin

Questa SV/AFV Tutorial, v6.4c 17

Before you Begin
Preparation for some of the lessons leaves certain details up to you. You will decide the best
way to create directories, copy files, and execute programs within your operating system.
(When you are operating the simulator within QuestaSim’s GUI, the interface is consistent for
all platforms.)

Examples show Windows path separators - use separators appropriate for your operating system
when trying the examples.

Example Designs
QuestaSim comes with Verilog and VHDL versions of the designs used in these lessons. This
allows you to do the tutorial regardless of which license type you have. Though we have tried to
minimize the differences between the Verilog and VHDL versions, we could not do so in all
cases. In cases where the designs differ (e.g., line numbers or syntax), you will find language-
specific instructions. Follow the instructions that are appropriate for the language you use.

Questa SV/AFV Tutorial, v6.4c18

Introduction
Before you Begin

Questa SV/AFV Tutorial, v6.4c 19

Chapter 2
Conceptual Overview

Introduction

QuestaSim is a verification and simulation tool for VHDL, Verilog, SystemVerilog, and mixed-
language designs.

This lesson provides a brief conceptual overview of the QuestaSim simulation environment. It
is divided into five topics, which you will learn more about in subsequent lessons.

• Design Optimizations — Refer to the Optimizing Designs with vopt chapter in the
User’s Manual.

• Basic simulation flow — Refer to Chapter 3 Basic Simulation.

• Project flow — Refer to Chapter 4 Projects.

• Multiple library flow — Refer to Chapter 5 Working With Multiple Libraries.

• Debugging tools — Refer to remaining lessons.

Design Optimizations
Before discussing the basic simulation flow, it is important to understand design optimization.
By default, QuestaSim optimizations are automatically performed on all designs. These
optimizations are designed to maximize simulator performance, yielding improvements up to
10X, in some Verilog designs, over non-optimized runs.

Global optimizations, however, may have an impact on the visibility of the design simulation
results you can view – certain signals and processes may not be visible. If these signals and
processes are important for debugging the design, it may be necessary to customize the
simulation by removing optimizations from specific modules.

It is important, therefore, to make an informed decision as to how best to apply optimizations to
your design. The tool that performs global optimizations in QuestaSim is called vopt. Please
refer to the Optimizing Designs with vopt chapter in the QuestaSim User’s Manual for a
complete discussion of optimization trade-offs and customizations. For details on command
syntax and usage, please refer to vopt in the Reference Manual.

Basic Simulation Flow
The following diagram shows the basic steps for simulating a design in QuestaSim.

Questa SV/AFV Tutorial, v6.4c20

Conceptual Overview
Project Flow

Figure 2-1. Basic Simulation Flow - Overview Lab

• Creating the Working Library

In QuestaSim, all designs are compiled into a library. You typically start a new
simulation in QuestaSim by creating a working library called "work". "Work" is the
library name used by the compiler as the default destination for compiled design units.

• Compiling Your Design

After creating the working library, you compile your design units into it. The QuestaSim
library format is compatible across all supported platforms. You can simulate your
design on any platform without having to recompile your design.

• Loading the Simulator with Your Design and Running the Simulation

With the design compiled, you load the simulator with your design by invoking the
simulator on a top-level module (Verilog) or a configuration or entity/architecture pair
(VHDL).

Assuming the design loads successfully, the simulation time is set to zero, and you enter
a run command to begin simulation.

• Debugging Your Results

If you don’t get the results you expect, you can use QuestaSim’s robust debugging
environment to track down the cause of the problem.

Project Flow
A project is a collection mechanism for an HDL design under specification or test. Even though
you don’t have to use projects in QuestaSim, they may ease interaction with the tool and are
useful for organizing files and specifying simulation settings.

Create a working library

Compile design files

Load and Run simulation

Debug results

Conceptual Overview
Multiple Library Flow

Questa SV/AFV Tutorial, v6.4c 21

The following diagram shows the basic steps for simulating a design within a QuestaSim
project.

Figure 2-2. Project Flow

As you can see, the flow is similar to the basic simulation flow. However, there are two
important differences:

• You do not have to create a working library in the project flow; it is done for you
automatically.

• Projects are persistent. In other words, they will open every time you invoke QuestaSim
unless you specifically close them.

Multiple Library Flow
QuestaSim uses libraries in two ways: 1) as a local working library that contains the compiled
version of your design; 2) as a resource library. The contents of your working library will
change as you update your design and recompile. A resource library is typically static and
serves as a parts source for your design. You can create your own resource libraries, or they
may be supplied by another design team or a third party (e.g., a silicon vendor).

You specify which resource libraries will be used when the design is compiled, and there are
rules to specify in which order they are searched. A common example of using both a working
library and a resource library is one where your gate-level design and testbench are compiled
into the working library, and the design references gate-level models in a separate resource
library.

Create a project

Add files to the project

Run simulation

Debug results

Compile design files

Questa SV/AFV Tutorial, v6.4c22

Conceptual Overview
Debugging Tools

The diagram below shows the basic steps for simulating with multiple libraries.

Figure 2-3. Multiple Library Flow

You can also link to resource libraries from within a project. If you are using a project, you
would replace the first step above with these two steps: create the project and add the testbench
to the project.

Debugging Tools
QuestaSim offers numerous tools for debugging and analyzing your design. Several of these
tools are covered in subsequent lessons, including:

• Using projects

• Working with multiple libraries

• Simulating with SystemC

• Setting breakpoints and stepping through the source code

• Viewing waveforms and measuring time

• Exploring the "physical" connectivity of your design

• Viewing and initializing memories

• Creating stimulus with the Waveform Editor

Create a working library

Compile design files

Run simulation

Debug results

Link to resource libraries

Conceptual Overview
Debugging Tools

Questa SV/AFV Tutorial, v6.4c 23

• Analyzing simulation performance

• Testing code coverage

• Comparing waveforms

• Debugging with PSL assertions

• Using SystemVerilog assertions and cover directives

• Using the SystemVerilog DPI

• Automating simulation

Questa SV/AFV Tutorial, v6.4c24

Conceptual Overview
Debugging Tools

Questa SV/AFV Tutorial, v6.4c 25

Chapter 3
Basic Simulation

Introduction

In this lesson you will go step-by-step through the basic simulation flow:

Figure 3-1. Basic Simulation Flow - Simulation Lab

Design Files for this Lesson

The sample design for this lesson is a simple 8-bit, binary up-counter with an associated
testbench. The pathnames are as follows:

Verilog – <install_dir>/examples/tutorials/verilog/basicSimulation/counter.v and tcounter.v

VHDL – <install_dir>/examples/tutorials/vhdl/basicSimulation/counter.vhd and tcounter.vhd

This lesson uses the Verilog files counter.v and tcounter.v. If you have a VHDL license, use
counter.vhd and tcounter.vhd instead. Or, if you have a mixed license, feel free to use the
Verilog testbench with the VHDL counter or vice versa.

Related Reading

User’s Manual Chapters: Design Libraries, Verilog and SystemVerilog Simulation, and VHDL
Simulation.

Reference Manual commands: vlib, vmap, vlog, vcom, vopt, view, and run.

Debug results

Compile design units

Run simulation

Create a working library

Questa SV/AFV Tutorial, v6.4c26

Basic Simulation
Create the Working Design Library

Create the Working Design Library
Before you can simulate a design, you must first create a library and compile the source code
into that library.

1. Create a new directory and copy the design files for this lesson into it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons).

Verilog: Copy counter.v and tcounter.v files from
/<install_dir>/examples/tutorials/verilog/basicSimulation to the new directory.

VHDL: Copy counter.vhd and tcounter.vhd files from
/<install_dir>/examples/tutorials/vhdl/basicSimulation to the new directory.

2. Start QuestaSim if necessary.

a. Type vsim at a UNIX shell prompt or use the QuestaSim icon in Windows.

Upon opening QuestaSim for the first time, you will see the Welcome to QuestaSim
dialog. Click Close.

b. Select File > Change Directory and change to the directory you created in step 1.

3. Create the working library.

a. Select File > New > Library.

This opens a dialog where you specify physical and logical names for the library
(Figure 3-2). You can create a new library or map to an existing library. We’ll be
doing the former.

Figure 3-2. The Create a New Library Dialog

b. Type work in the Library Name field (if it isn’t already entered automatically).

Basic Simulation
Create the Working Design Library

Questa SV/AFV Tutorial, v6.4c 27

c. Click OK.

QuestaSim creates a directory called work and writes a specially-formatted file
named _info into that directory. The _info file must remain in the directory to
distinguish it as a QuestaSim library. Do not edit the folder contents from your
operating system; all changes should be made from within QuestaSim.

QuestaSim also adds the library to the list in the Workspace (Figure 3-3) and records
the library mapping for future reference in the QuestaSim initialization file
(modelsim.ini).

Figure 3-3. work Library in the Workspace

When you pressed OK in step 3c above, the following was printed to the Transcript:

vlib work
vmap work work

These two lines are the command-line equivalents of the menu selections you made. Many
command-line equivalents will echo their menu-driven functions in this fashion.

Compile the Design

With the working library created, you are ready to compile your source files.

You can compile by using the menus and dialogs of the graphic interface, as in the Verilog
example below, or by entering a command at the QuestaSim> prompt.

1. Compile counter.v and tcounter.v.

a. Select Compile > Compile. This opens the Compile Source Files dialog
(Figure 3-4).

If the Compile menu option is not available, you probably have a project open. If so,
close the project by making the Workspace pane active and selecting File > Close
from the menus.

Questa SV/AFV Tutorial, v6.4c28

Basic Simulation
Create the Working Design Library

b. Select both counter.v and tcounter.v modules from the Compile Source Files dialog
and click Compile. The files are compiled into the work library.

c. When compile is finished, click Done.

Figure 3-4. Compile Source Files Dialog

2. View the compiled design units.

a. On the Library tab, click the ’+’ icon next to the work library and you will see two
design units (Figure 3-5). You can also see their types (Modules, Entities, etc.) and
the path to the underlying source files (scroll to the right if necessary).

Figure 3-5. Verilog Modules Compiled into work Library

Load the Design

1. Load the test_counter module into the simulator.

a. Enter the following command at the QuestaSim> prompt in the Transcript window:

vsim -voptargs="+acc" test_counter

Basic Simulation
Create the Working Design Library

Questa SV/AFV Tutorial, v6.4c 29

The -voptargs=”+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note
By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

When the design is loaded, you will see a new tab in the Workspace named sim that
displays the hierarchical structure of the design (Figure 3-6). You can navigate
within the hierarchy by clicking on any line with a ’+’ (expand) or ’-’ (contract)
icon. You will also see a tab named Files that displays all files included in the
design.

Figure 3-6. Workspace sim Tab Displays Design Hierarchy

2. View design objects in the Objects pane.

a. Open the View menu and select Objects. The command line equivalent is:

view objects

The Objects pane (Figure 3-7) shows the names and current values of data objects in
the current region (selected in the Workspace). Data objects include signals, nets,
registers, constants and variables not declared in a process, generics, parameters.

Questa SV/AFV Tutorial, v6.4c30

Basic Simulation
Run the Simulation

Figure 3-7. Object Pane Displays Design Objects

You may open other windows and panes with the View menu or with the view
command. See Navigating the Interface.

Run the Simulation
Now you will open the Wave window, add signals to it, then run the simulation.

1. Open the Wave debugging window.

a. Enter view wave at the command line.

You can also use the View > Wave menu selection to open a Wave window.

The Wave window is one of several windows available for debugging. To see a list
of the other debugging windows, select the View menu. You may need to move or
resize the windows to your liking. Window panes within the Main window can be
zoomed to occupy the entire Main window or undocked to stand alone. For details,
see Navigating the Interface.

2. Add signals to the Wave window.

a. In the Workspace pane, select the sim tab.

b. Right-click test_counter to open a popup context menu.

c. Select Add > To Wave > All items in region (Figure 3-8).

All signals in the design are added to the Wave window.

Basic Simulation
Run the Simulation

Questa SV/AFV Tutorial, v6.4c 31

Figure 3-8. Using the Popup Menu to Add Signals to Wave Window

3. Run the simulation.

a. Click the Run icon in the Main or Wave window toolbar.

The simulation runs for 100 ns (the default simulation length) and waves are
drawn in the Wave window.

b. Enter run 500 at the VSIM> prompt in the Main window.

The simulation advances another 500 ns for a total of 600 ns (Figure 3-9).

Questa SV/AFV Tutorial, v6.4c32

Basic Simulation
Set Breakpoints and Step through the Source

Figure 3-9. Waves Drawn in Wave Window

c. Click the Run -All icon on the Main or Wave window toolbar.

The simulation continues running until you execute a break command or it
hits a statement in your code (e.g., a Verilog $stop statement) that halts the
simulation.

d. Click the Break icon. The simulation stops running.

Set Breakpoints and Step through the Source
Next you will take a brief look at one interactive debugging feature of the QuestaSim
environment. You will set a breakpoint in the Source window, run the simulation, and then step
through the design under test. Breakpoints can be set only on lines with red line numbers.

1. Open counter.v in the Source window.

a. Select the Files tab in the Main window Workspace.

b. Click the + sign next to the sim filename to see the contents of vsim.wlf dataset.

c. Double-click counter.v (or counter.vhd if you are simulating the VHDL files) to
open it in the Source window.

2. Set a breakpoint on line 36 of counter.v (or, line 39 of counter.vhd for VHDL).

a. Scroll to line 36 and click in the BP (breakpoint) column next to the line number.

A red ball appears in the line number column at line number 36 (Figure 3-10),
indicating that a breakpoint has been set.

Basic Simulation
Set Breakpoints and Step through the Source

Questa SV/AFV Tutorial, v6.4c 33

Figure 3-10. Setting Breakpoint in Source Window

3. Disable, enable, and delete the breakpoint.

a. Click the red ball to disable the breakpoint. It will become a black ball.

b. Click the black ball again to re-enable the breakpoint. It will become a red ball.

c. Click the red ball with your right mouse button and select Remove Breakpoint 36.

d. Click in the line number column next to line number 36 again to re-create the
breakpoint.

4. Restart the simulation.

a. Click the Restart icon to reload the design elements and reset the simulation
time to zero.

The Restart dialog that appears gives you options on what to retain during
the restart (Figure 3-11).

Questa SV/AFV Tutorial, v6.4c34

Basic Simulation
Set Breakpoints and Step through the Source

Figure 3-11. Setting Restart Functions

b. Click the Restart button in the Restart dialog.

c. Click the Run -All icon.

The simulation runs until the breakpoint is hit. When the simulation hits the
breakpoint, it stops running, highlights the line with a blue arrow in the
Source view (Figure 3-12), and issues a Break message in the Transcript pane.

Figure 3-12. Blue Arrow Indicates Where Simulation Stopped.

When a breakpoint is reached, typically you want to know one or more signal
values. You have several options for checking values:

• look at the values shown in the Objects window (Figure 3-13).

Basic Simulation
Navigating the Interface

Questa SV/AFV Tutorial, v6.4c 35

Figure 3-13. Values Shown in Objects Window

• set your mouse pointer over a variable in the Source window and a yellow box
will appear with the variable name and the value of that variable at the time of
the selected cursor in the Wave window

• highlight a signal, parameter, or variable in the Source window, right-click it,
and select Examine from the pop-up menu to display the variable and its current
value in a Source Examine window (Figure 3-14)

Figure 3-14. Parameter Name and Value in Source Examine Window

• use the examine command at the VSIM> prompt to output a variable value to
the Main window Transcript (i.e., examine count)

5. Try out the step commands.

a. Click the Step icon on the Main window toolbar.

This single-steps the debugger.

Experiment on your own. Set and clear breakpoints and use the Step, Step Over, and
Continue Run commands until you feel comfortable with their operation.

Navigating the Interface
The Main window is composed of a number of "panes" and sub-windows that display various
types of information about your design, simulation, or debugging session. You can also access
other tools from the Main window that display in stand-alone windows (e.g., the Dataflow
window).

Questa SV/AFV Tutorial, v6.4c36

Basic Simulation
Navigating the Interface

Figure 3-15. The Main Window

The following table describes some of the key elements of the Main window.

Table 3-1. The Main Window

Window/pane Description

Workspace This pane comprises multiple tabs that contain
various sorts of information about the current
project or design. Once a design is loaded,
additional tabs will appear. Refer to the
section Workspace in the User’s Manual for
more information.

Transcript The Transcript pane provides a command-line
interface and serves as an activity log
including status and error messages. Refer to
the section Transcript Window in the User’s
Manual for more information.

Transcript

Workspace
MDI frame

Basic Simulation
Navigating the Interface

Questa SV/AFV Tutorial, v6.4c 37

Here are a few important points to keep in mind about the QuestaSim interface:

• Windows/panes can be resized, moved, zoomed, undocked, etc. and the changes are
persistent.

You have a number of options for re-sizing, re-positioning, undocking/redocking, and
generally modifying the physical characteristics of windows and panes. When you exit
QuestaSim, the current layout is saved so that it appears the same the next time you
invoke the tool. Refer to the Main Window section in the User’s Manual for more
information.

• Menus are context sensitive.

The menu items that are available and how certain menu items behave depend on which
pane or window is active. For example, if the sim tab in the Workspace is active and you
choose Edit from the menu bar, the Clear command is disabled. However, if you click in
the Transcript pane and choose Edit, the Clear command is enabled. The active pane is
denoted by a blue title bar.

Let us try a few things.

1. Zoom and undock panes.

a. Click the Zoom/Unzoom icon in the upper right corner of the Workspace pane
(Figure 3-16).

Figure 3-16. Window/Pane Control Icons

The pane fills the entire Main window (Figure 3-17).

MDI frame The Multiple Document Interface (MDI)
frame holds windows for which there can be
multiple instances. These include Source
editor windows, Wave windows, and Memory
content windows. Refer to the section
Multiple Document Interface (MDI) Frame in
the User’s Manual for more information.

Table 3-1. The Main Window

Window/pane Description

Questa SV/AFV Tutorial, v6.4c38

Basic Simulation
Navigating the Interface

Figure 3-17. zooming in on Workspace Pane

b. Click the Zoom/Unzoom pane icon in the Workspace.

c. Click the Dock/Undock pane icon in the upper right corner of the Transcript pane.

The Transcript becomes a stand-alone window.

d. Click the Dock/Undock pane icon on the Transcript.

e. Click the Hide pane icon in the Workspace.

f. Select View > Workspace from the menus to re-open the Workspace.

2. Move and resize panes.

a. Hover your mouse pointer in the center of the Transcript title bar, where the two
parallel lines are interrupted by 3 lines of small dots. This is the handle for the pane.
When the cursor is over the pane handle it becomes a four-headed arrow.

b. Click and drag the Transcript up and to the right until you see a gray outline on the
right-hand side of the MDI frame.

When you let go of the mouse button, the Transcript is moved and the MDI frame
and Workspace panes shift to the left (Figure 3-18).

Basic Simulation
Navigating the Interface

Questa SV/AFV Tutorial, v6.4c 39

Figure 3-18. Panes Rearranged in Main Window

c. Select Layout > Reset.

The layout returns to its original setting.

Tip: Moving panes can get confusing, and you may not always obtain the results you
expect. Practice moving a pane around, watching the gray outline to see what happens
when you drop it in various places. Your layout will be saved when you exit QuestaSim
and will reappear in the last configuration when you next open QuestaSim. (It’s a good
idea to close all panes in the MDI frame at the end of each lesson in this tutorial so only
files relevant to each lesson will be displayed.)

As you practice, notice that the MDI frame cannot be moved in the same manner as the
panes. It does not have a handle in its header bar.

Selecting Layout > Reset is the easiest way to rectify an undesired layout.

d. Hover your mouse pointer on the border between two panes so it becomes a double-
headed arrow.

e. Click-and-drag left and right or up and down to resize the pane.

f. Select Layout > Reset.

3. Observe context sensitivity of menu commands.

a. Click anywhere in the Workspace.

b. Select the Edit menu and notice that the Clear command is disabled.

Questa SV/AFV Tutorial, v6.4c40

Basic Simulation
Navigating the Interface

c. Click in the Transcript and select Edit > Clear.

This command applies to the Transcript pane but not the Workspace pane.

d. Click on a design object in the sim tab of the Workspace and select File > Open.

e. Notice that the Open dialog filters to show Log files (*.wlf).

f. Now click on a filename in the Files tab of the Workspace and select File > Open.

Notice that the Open dialog filters to show HDL file types instead.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Select Simulate > End Simulation.

2. Click Yes when prompted to confirm that you wish to quit simulating.

Questa SV/AFV Tutorial, v6.4c 41

Chapter 4
Projects

Introduction

In this lesson you will practice creating a project.

At a minimum, projects contain a work library and a session state that is stored in a .mpf file. A
project may also consist of:

• HDL source files or references to source files

• other files such as READMEs or other project documentation

• local libraries

• references to global libraries

Design Files for this Lesson

The sample design for this lesson is a simple 8-bit, binary up-counter with an associated
testbench. The pathnames are as follows:

Verilog – <install_dir>/examples/tutorials/verilog/projects/counter.v and tcounter.v

VHDL – <install_dir>/examples/tutorials/vhdl/projects/counter.vhd and tcounter.vhd

This lesson uses the Verilog files tcounter.v and counter.v. If you have a VHDL license, use
tcounter.vhd and counter.vhd instead.

Related Reading

User’s Manual Chapter: Projects.

Create a New Project
1. Create a new directory and copy the design files for this lesson into it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons).

Verilog: Copy counter.v and tcounter.v files from
/<install_dir>/examples/tutorials/verilog/projects to the new directory.

VHDL: Copy counter.vhd and tcounter.vhd files from
/<install_dir>/examples/tutorials/vhdl/projects to the new directory.

Questa SV/AFV Tutorial, v6.4c42

Projects
Create a New Project

2. If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a. Type vsim at a UNIX shell prompt or use the QuestaSim icon in Windows.

b. Select File > Change Directory and change to the directory you created in step 1.

3. Create a new project.

a. Select File > New > Project (Main window) from the menu bar.

This opens the Create Project dialog where you can enter a Project Name, Project
Location (i.e., directory), and Default Library Name (Figure 4-1). You can also
reference library settings from a selected .ini file or copy them directly into the
project. The default library is where compiled design units will reside.

b. Type test in the Project Name field.

c. Click the Browse button for the Project Location field to select a directory where the
project file will be stored.

d. Leave the Default Library Name set to work.

e. Click OK.

Figure 4-1. Create Project Dialog - Project Lab

Add Objects to the Project
Once you click OK to accept the new project settings, you will see a blank Project tab in the
Workspace area of the Main window and the Add items to the Project dialog will appear
(Figure 4-2). From this dialog you can create a new design file, add an existing file, add a folder
for organization purposes, or create a simulation configuration (discussed below).

Projects
Create a New Project

Questa SV/AFV Tutorial, v6.4c 43

Figure 4-2. Adding New Items to a Project

1. Add two existing files.

a. Click Add Existing File.

This opens the Add file to Project dialog (Figure 4-3). This dialog lets you browse to
find files, specify the file type, specify a folder to which the file will be added, and
identify whether to leave the file in its current location or to copy it to the project
directory.

Figure 4-3. Add file to Project Dialog

b. Click the Browse button for the File Name field. This opens the “Select files to add
to project” dialog and displays the contents of the current directory.

c. Verilog: Select counter.v and tcounter.v and click Open.
VHDL: Select counter.vhd and tcounter.vhd and click Open.

This closes the “Select files to add to project” dialog and displays the selected files
in the “Add file to Project” dialog (Figure 4-3).

d. Click OK to add the files to the project.

Questa SV/AFV Tutorial, v6.4c44

Projects
Create a New Project

e. Click Close to dismiss the Add items to the Project dialog.

You should now see two files listed in the Project tab of the Workspace pane
(Figure 4-4). Question mark icons (?) in the Status column indicate that the file has
not been compiled or that the source file has changed since the last successful
compile. The other columns identify file type (e.g., Verilog or VHDL), compilation
order, and modified date.

Figure 4-4. Newly Added Project Files Display a “?” for Status

Changing Compile Order (VHDL)
By default QuestaSim performs default binding of VHDL designs when you load the design
with vsim. However, you can elect to perform default binding at compile time. (For details,
refer to the section Default Binding in the User’s Manual.) If you elect to do default binding at
compile, then the compile order is important. Follow these steps to change compilation order
within a project.

1. Change the compile order.

a. Select Compile > Compile Order.

This opens the Compile Order dialog box.

b. Click the Auto Generate button.

QuestaSim "determines" the compile order by making multiple passes over the files.
It starts compiling from the top; if a file fails to compile due to dependencies, it
moves that file to the bottom and then recompiles it after compiling the rest of the
files. It continues in this manner until all files compile successfully or until a file(s)
can’t be compiled for reasons other than dependency.

Alternatively, you can select a file and use the Move Up and Move Down buttons to
put the files in the correct order (Figure 4-5).

Projects
Create a New Project

Questa SV/AFV Tutorial, v6.4c 45

Figure 4-5. Compile Order Dialog

c. Click OK to close the Compile Order dialog.

Compile the Design
1. Compile the files.

a. Right-click either counter.v or tcounter.v in the Project tab and select Compile >
Compile All from the pop-up menu.

QuestaSim compiles both files and changes the symbol in the Status column to a
green check mark. A check mark means the compile succeeded. If compile fails, the
symbol will be a red ’X’, and you will see an error message in the Transcript pane.

2. View the design units.

a. Click the Library tab in the workspace (Figure 4-6).

b. Click the "+" icon next to the work library.

You should see two compiled design units, their types (modules in this case), and the
path to the underlying source files.

Questa SV/AFV Tutorial, v6.4c46

Projects
Create a New Project

Figure 4-6. Library Tab with Expanded Library

Load the Design
1. Load the test_counter design unit.

a. Enter the following command at the QuestaSim> prompt in the Transcript pane.

vsim -voptargs="+acc" test_counter

The -voptargs=”+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note
By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

You should see 3 new tabs in the Main window Workspace. The sim tab displays the
structure of the test_counter design unit (Figure 4-7). The Files tab contains
information about the underlying source files. The Memories tab lists all memories
in the design.

Projects
Organizing Projects with Folders

Questa SV/AFV Tutorial, v6.4c 47

Figure 4-7. Structure Tab for a Loaded Design

At this point you would typically run the simulation and analyze or debug your
design like you did in the previous lesson. For now, you’ll continue working with
the project. However, first you need to end the simulation that started when you
loaded test_counter.

2. End the simulation.

a. Select Simulate > End Simulation.

b. Click Yes.

Organizing Projects with Folders
If you have a lot of files to add to a project, you may want to organize them in folders. You can
create folders either before or after adding your files. If you create a folder before adding files,
you can specify in which folder you want a file placed at the time you add the file (see Folder
field in Figure 4-3). If you create a folder after adding files, you edit the file properties to move
it to that folder.

Add Folders
As shown previously in Figure 4-2, the Add items to the Project dialog has an option for adding
folders. If you have already closed that dialog, you can use a menu command to add a folder.

1. Add a new folder.

a. Right-click inside the Projects tab of the Workspace and select Add to Project >
Folder.

b. Type Design Files in the Folder Name field (Figure 4-8).

Questa SV/AFV Tutorial, v6.4c48

Projects
Organizing Projects with Folders

Figure 4-8. Adding New Folder to Project

c. Click OK.

The new Design Files folder is displayed in the Project tab (Figure 4-9).

Figure 4-9. A Folder Within a Project

2. Add a sub-folder.

a. Right-click anywhere in the Project tab and select Add to Project > Folder.

b. Type HDL in the Folder Name field (Figure 4-10).

Figure 4-10. Creating Subfolder

c. Click the Folder Location drop-down arrow and select Design Files.

d. Click OK.

A ’+’ icon appears next to the Design Files folder in the Project tab (Figure 4-11).

Projects
Organizing Projects with Folders

Questa SV/AFV Tutorial, v6.4c 49

Figure 4-11. A folder with a Sub-folder

e. Click the ’+’ icon to see the HDL sub-folder.

Moving Files to Folders
If you don’t place files into a folder when you first add the files to the project, you can move
them into a folder using the properties dialog.

1. Move tcounter.v and counter.v to the HDL folder.

a. Select both counter.v and tcounter.v in the Project tab of the Workspace.

b. Right-click either file and select Properties.

This opens the Project Compiler Settings dialog (Figure 4-12), which allows you to
set a variety of options on your design files.

Figure 4-12. Changing File Location via the Project Compiler Settings Dialog

c. Click the Place In Folder drop-down arrow and select HDL.

d. Click OK.

Questa SV/AFV Tutorial, v6.4c50

Projects
Simulation Configurations

The selected files are moved into the HDL folder. Click the ’+’ icon next to the HDL
folder to see the files.

The files are now marked with a ’?’ in the Status column because you moved the
files. The project no longer knows if the previous compilation is still valid.

Simulation Configurations
A Simulation Configuration associates a design unit(s) and its simulation options. For example,
let’s say that every time you load tcounter.v you want to set the simulator resolution to
picoseconds (ps) and enable event order hazard checking. Ordinarily, you would have to specify
those options each time you load the design. With a Simulation Configuration, you specify
options for a design and then save a "configuration" that associates the design and its options.
The configuration is then listed in the Project tab and you can double-click it to load tcounter.v
along with its options.

1. Create a new Simulation Configuration.

a. Right-click in the Projects tab and select Add to Project > Simulation
Configuration from the popup menu.

This opens the Add Simulation Configuration dialog (Figure 4-13). The tabs in this
dialog present a myriad of simulation options. You may want to explore the tabs to
see what is available. You can consult the QuestaSim User’s Manual to get a
description of each option.

Projects
Simulation Configurations

Questa SV/AFV Tutorial, v6.4c 51

Figure 4-13. Simulation Configuration Dialog

b. Type counter in the Simulation Configuration Name field.

c. Select HDL from the Place in Folder drop-down.

d. Click the ’+’ icon next to the work library and select test_counter.

e. Click the Resolution drop-down and select ps.

f. Uncheck the Enable optimization selection box.

g. For Verilog, click the Verilog tab and check Enable hazard checking (-hazards).

h. Click Save.

The Project tab now shows a Simulation Configuration named counter in the HDL
folder (Figure 4-14).

Questa SV/AFV Tutorial, v6.4c52

Projects
Simulation Configurations

Figure 4-14. A Simulation Configuration in the Project Tab

2. Load the Simulation Configuration.

a. Double-click the counter Simulation Configuration in the Project tab.

In the Transcript pane of the Main window, the vsim (the QuestaSim simulator)
invocation shows the -hazards and -t ps switches (Figure 4-15). These are the
command-line equivalents of the options you specified in the Simulate dialog.

Figure 4-15. Transcript Shows Options for Simulation Configurations

Lesson Wrap-Up

This concludes this lesson. Before continuing you need to end the current simulation and close
the current project.

1. Select Simulate > End Simulation. Click Yes.

2. Select the Project tab in the Main window Workspace.

3. Right-click in this tab to open a popup menu and select Close Project.

4. Click OK.

Projects
Simulation Configurations

Questa SV/AFV Tutorial, v6.4c 53

If you do not close the project, it will open automatically the next time you start
QuestaSim.

Questa SV/AFV Tutorial, v6.4c54

Projects
Simulation Configurations

Questa SV/AFV Tutorial, v6.4c 55

Chapter 5
Working With Multiple Libraries

Introduction

In this lesson you will practice working with multiple libraries. You might have multiple
libraries to organize your design, to access IP from a third-party source, or to share common
parts between simulations.

You will start the lesson by creating a resource library that contains the counter design unit.
Next, you will create a project and compile the testbench into it. Finally, you will link to the
library containing the counter and then run the simulation.

Design Files for this Lesson

The sample design for this lesson is a simple 8-bit, binary up-counter with an associated
testbench. The pathnames are as follows:

Verilog – <install_dir>/examples/tutorials/verilog/libraries/counter.v and tcounter.v

VHDL – <install_dir>/examples/tutorials/vhdl/libraries/counter.vhd and tcounter.vhd

This lesson uses the Verilog files tcounter.v and counter.v in the examples. If you have a VHDL
license, use tcounter.vhd and counter.vhd instead.

Related Reading

User’s Manual Chapter: Design Libraries.

Creating the Resource Library
Before creating the resource library, make sure the modelsim.ini in your install directory is
“Read Only.” This will prevent permanent mapping of resource libraries to the master
modelsim.ini file. See Permanently Mapping VHDL Resource Libraries.

1. Create a directory for the resource library.

Create a new directory called resource_library. Copy counter.v from
<install_dir>/examples/tutorials/verilog/libraries to the new directory.

2. Create a directory for the testbench.

Questa SV/AFV Tutorial, v6.4c56

Working With Multiple Libraries
Creating the Resource Library

Create a new directory called testbench that will hold the testbench and project files.
Copy tcounter.v from <install_dir>/examples/tutorials/verilog/libraries to the new
directory.

You are creating two directories in this lesson to mimic the situation where you receive
a resource library from a third-party. As noted earlier, we will link to the resource
library in the first directory later in the lesson.

3. Start QuestaSim and change to the resource_library directory.

If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a. Type vsim at a UNIX shell prompt or use the QuestaSim icon in Windows.

If the Welcome to QuestaSim dialog appears, click Close.

b. Select File > Change Directory and change to the resource_library directory you
created in step 1.

4. Create the resource library.

a. Select File > New > Library.

b. Type parts_lib in the Library Name field (Figure 5-1).

Figure 5-1. Creating New Resource Library

The Library Physical Name field is filled out automatically.

Once you click OK, QuestaSim creates a directory for the library, lists it in the
Library tab of the Workspace, and modifies the modelsim.ini file to record this new
library for the future.

5. Compile the counter into the resource library.

Working With Multiple Libraries
Creating the Project

Questa SV/AFV Tutorial, v6.4c 57

a. Click the Compile icon on the Main window toolbar.

b. Select the parts_lib library from the Library list (Figure 5-2).

Figure 5-2. Compiling into the Resource Library

c. Double-click counter.v to compile it.

d. Click Done.

You now have a resource library containing a compiled version of the counter
design unit.

6. Change to the testbench directory.

a. Select File > Change Directory and change to the testbench directory you created
in step 2.

Creating the Project
Now you will create a project that contains tcounter.v, the counter’s testbench.

1. Create the project.

a. Select File > New > Project.

b. Type counter in the Project Name field.

c. Do not change the Project Location field or the Default Library Name field. (The
default library name is work.)

Questa SV/AFV Tutorial, v6.4c58

Working With Multiple Libraries
Linking to the Resource Library

d. Make sure “Copy Library Mappings” is selected. The default modelsim.ini file will
be used.

e. Click OK.

2. Add the testbench to the project.

a. Click Add Existing File in the Add items to the Project dialog.

b. Click the Browse button and select tcounter.v in the “Select files to add to project”
dialog.

c. Click Open.

d. Click OK.

e. Click Close to dismiss the “Add items to the Project” dialog.

The tcounter.v file is listed in the Project tab of the Main window.

3. Compile the testbench.

a. Right-click tcounter.v and select Compile > Compile Selected.

Linking to the Resource Library
To wrap up this part of the lesson, you will link to the parts_lib library you created earlier. But
first, try simulating the testbench without the link and see what happens.

QuestaSim responds differently for Verilog and VHDL in this situation.

Verilog

1. Simulate a Verilog design with a missing resource library.

a. Enter the following command at the QuestaSim> prompt in the Transcript pane.

vsim -voptargs="+acc" test_counter

The -voptargs=”+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note
By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

The Main window Transcript reports an error loading the design because the counter
module is not defined.

Working With Multiple Libraries
Linking to the Resource Library

Questa SV/AFV Tutorial, v6.4c 59

VHDL

1. Simulate a VHDL design with a missing resource library.

a. Enter the following command at the QuestaSim> prompt in the Transcript pane.

vsim -voptargs="+acc" test_counter

The -voptargs=”+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note
By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

The Main window Transcript reports a warning (Figure 5-3). When you see a
message that contains text like "Warning: (vsim-3473)", you can view more detail
by using the verror command.

Figure 5-3. VHDL Simulation Warning Reported in Main Window

b. Type verror 3473 at the VSIM> prompt.

The expanded error message tells you that a component (’dut’ in this case) has not
been explicitly bound and no default binding can be found.

c. Type quit -sim to quit the simulation.

The process for linking to a resource library differs between Verilog and VHDL. If you are
using Verilog, follow the steps in Linking in Verilog. If you are using VHDL, follow the steps
in Linking in VHDL one page later.

Linking in Verilog
Linking in Verilog requires that you specify a "search library" when you invoke the simulator.

1. Specify a search library during simulation.

Questa SV/AFV Tutorial, v6.4c60

Working With Multiple Libraries
Linking to the Resource Library

a. Click the Simulate icon on the Main window toolbar.

b. Click the ’+’ icon next to the work library and select test_counter.

c. Uncheck the Enable optimization selection box.

d. Click the Libraries tab.

e. Click the Add button next to the Search Libraries field and browse to parts_lib in the
resource_library directory you created earlier in the lesson.

f. Click OK.

The dialog should have parts_lib listed in the Search Libraries field (Figure 5-4).

g. Click OK.

The design loads without errors.

Figure 5-4. Specifying a Search Library in the Simulate Dialog

Linking in VHDL
To link to a resource library in VHDL, you have to create a logical mapping to the physical
library and then add LIBRARY and USE statements to the source file.

1. Create a logical mapping to parts_lib.

Working With Multiple Libraries
Linking to the Resource Library

Questa SV/AFV Tutorial, v6.4c 61

a. Select File > New > Library.

b. In the Create a New Library dialog, select a map to an existing library.

c. Type parts_lib in the Library Name field.

d. Click Browse to open the Browse for Folder dialog and browse to parts_lib in the
resource_library directory you created earlier in the lesson.

e. Click OK to select the library and close the Select Library dialog.

f. The Create a New Library dialog should look similar to the one shown in Figure 5-5.
Click OK to close the dialog.

Figure 5-5. Mapping to the parts_lib Library

2. Add LIBRARY and USE statements to tcounter.vhd.

a. In the Library tab of the Main window, click the ’+’ icon next to the work library.

b. Right-click test_counter in the work library and select Edit.

c. This opens the file in the Source window.

d. Right-click in the Source window and uncheck Read Only.

e. Add these two lines to the top of the file:

LIBRARY parts_lib;
USE parts_lib.ALL;

The testbench source code should now look similar to that shown in Figure 5-6.

f. Select File > Save.

Questa SV/AFV Tutorial, v6.4c62

Working With Multiple Libraries
Permanently Mapping VHDL Resource Libraries

Figure 5-6. Adding LIBRARY and USE Statements to the Testbench

3. Recompile and simulate.

a. In the Project tab of the Workspace, right-click tcounter. vhd and select Compile >
Compile Selected.

b. Enter the following command at the QuestaSim> prompt in the Transcript pane.

vsim -voptargs="+acc" test_counter

c. The design loads without errors.

Permanently Mapping VHDL Resource Libraries
If you reference particular VHDL resource libraries in every VHDL project or simulation, you
may want to permanently map the libraries. Doing this requires that you edit the master
modelsim.ini file in the installation directory. Though you won’t actually practice it in this
tutorial, here are the steps for editing the file:

1. Locate the modelsim.ini file in the QuestaSim installation directory
(<install_dir>/questasim/modelsim.ini).

2. IMPORTANT - Make a backup copy of the file.

3. Change the file attributes of modelsim.ini so it is no longer "read-only."

4. Open the file and enter your library mappings in the [Library] section. For example:

parts_lib = C:/libraries/parts_lib

Working With Multiple Libraries
Permanently Mapping VHDL Resource Libraries

Questa SV/AFV Tutorial, v6.4c 63

5. Save the file.

6. Change the file attributes so the file is "read-only" again.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation and close
the project.

1. Select Simulate > End Simulation. Click Yes.

2. Select the Project tab of the Main window Workspace.

3. Select File > Close. Click OK.

Questa SV/AFV Tutorial, v6.4c64

Working With Multiple Libraries
Permanently Mapping VHDL Resource Libraries

Questa SV/AFV Tutorial, v6.4c 65

Chapter 6
Simulating Designs With SystemC

Introduction

QuestaSim treats SystemC as just another design language. With only a few exceptions in the
current release, you can simulate and debug your SystemC designs the same way you do HDL
designs.

Note
The functionality described in this lesson requires a systemc license feature in your
QuestaSim license file. Please contact your Mentor Graphics sales representative if you
currently do not have such a feature.

Design Files for this Lesson

There are two sample designs for this lesson. The first is a very basic design, called "basic",
containing only SystemC code. The second design is a ring buffer where the testbench and top-
level chip are implemented in SystemC and the lower-level modules are written in HDL.

The pathnames to the files are as follows:

SystemC – <install_dir>/examples/systemc/sc_basic

SystemC/Verilog – <install_dir>/examples/systemc/sc_vlog

SystemC/VHDL – <install_dir>/examples/systemc/sc_vhdl

This lesson uses the SystemC/Verilog version of the ringbuf design in the examples. If you have
a VHDL license, use the VHDL version instead. There is also a mixed version of the design, but
the instructions here do not account for the slight differences in that version.

Related Reading

User’s Manual Chapters: SystemC Simulation, Mixed-Language Simulation, and C Debug.

Reference Manual command: sccom.

Questa SV/AFV Tutorial, v6.4c66

Simulating Designs With SystemC
Setting up the Environment

Setting up the Environment
SystemC is a licensed feature. You need the systemc license feature in your QuestaSim license
file to simulate SystemC designs. Please contact your Mentor Graphics sales representatives if
you currently do not have such a feature.

The table below shows the supported operating systems for SystemC and the corresponding
required versions of a C compiler.

See SystemC simulation in the QuestaSim User’s Manual for further details.

Preparing an OSCI SystemC design
For an OpenSystemC Initiative (OSCI) compliant SystemC design to run on QuestaSim, you
must first:

• Replace sc_main() with an SC_MODULE, potentially adding a process to contain any
testbench code

• Replace sc_start() by using the run command in the GUI

• Remove calls to sc_initialize()

• Export the top level SystemC design unit(s) using the SC_MODULE_EXPORT macro

In order to maintain portability between OSCI and QuestaSim simulations, we recommend that
you preserve the original code by using #ifdef to add the QuestaSim-specific information. When
the design is analyzed, sccom recognizes the MTI_SYSTEMC preprocessing directive and
handles the code appropriately.

For more information on these modifications, refer to Modifying SystemC Source Code in the
User’s Manual.

Table 6-1. Supported Operating Systems for SystemC

Platform Supported compiler versions

RedHat Linux 7.2 and 7.3
RedHat Linux Enterprise version
2.1

gcc 3.2.3, gcc 4.0.2

AMD64 / SUSE Linux Enterprise
Server 9.0, 9.1, 10 or Red Hat
Enterprise Linux 3, 4

gcc 4.0.2
VCO is linux (32-bit binary)
VCO is linux_x86_64 (64-bit binary)

Solaris 8, 9, 10 gcc 3.3

Windows 2000 and XP Minimalist GNU for Windows
(MinGW) gcc 3.3.1

Simulating Designs With SystemC
Preparing an OSCI SystemC design

Questa SV/AFV Tutorial, v6.4c 67

1. Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory, then copy all files from
<install_dir>/examples/systemc/sc_basic into the new directory.

2. Start QuestaSim and change to the exercise directory.

If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a. Type vsim at a UNIX shell prompt or use the QuestaSim icon in Windows.

If the Welcome to QuestaSim dialog appears, click Close.

b. Select File > Change Directory and change to the directory you created in step 1.

3. Use a text editor to view and edit the basic_orig.cpp file. To use QuestaSim’s editor,
from the Main Menu select File > Open. Change the files of type to C/C++ files then
double-click basic_orig.cpp.

a. Using the #ifdef MTI_SYSTEMC preprocessor directive, add the
SC_MODULE_EXPORT(top); to the design as shown in Figure 6-1. (The left side
of Figure 6-1 is the original code; the right side is the modified code.) Close the
preprocessing directive with #else.

The original code in the .cpp file follows directly after #else. End that section of the
file with #endif.

b. Save the file as basic.cpp.

Questa SV/AFV Tutorial, v6.4c68

Simulating Designs With SystemC
Preparing an OSCI SystemC design

Figure 6-1. SystemC Code Before and After Modifications

A correctly modified copy of the basic.cpp is also available in the sc_basic/gold
directory.

4. Edit the basic_orig.h header file as shown in Figure 6-2.

a. Add a QuestaSim specific SC_MODULE (top) as shown in lines 52 through 65 of
Figure 6-2.

The declarations that were in sc_main are placed here in the header file, in
SC_MODULE (top). This creates a top level module above mod_a, which allows
the tool’s automatic name binding feature to properly associate the primitive
channels with their names.

Simulating Designs With SystemC
Preparing an OSCI SystemC design

Questa SV/AFV Tutorial, v6.4c 69

Figure 6-2. Editing the SystemC Header File.

Questa SV/AFV Tutorial, v6.4c70

Simulating Designs With SystemC
Compiling a SystemC-only Design

b. Save the file as basic.h.

A correctly modified copy of the basic.h is also available in the sc_basic/gold
directory.

You have now made all the edits that are required for preparing the design for compilation.

Compiling a SystemC-only Design
With the edits complete, you are ready to compile the design. Designs that contain only
SystemC code are compiled with sccom.

1. Set the working library.

a. Type vlib work in the QuestaSim Transcript window to create the working library.

2. Compile and link all SystemC files.

a. Type sccom -g basic.cpp at the QuestaSim> prompt.

The -g argument compiles the design for debug.

b. Type sccom -link at the QuestaSim> prompt to perform the final link on the
SystemC objects.

You have successfully compiled and linked the design. The successful compilation verifies that
all the necessary file modifications have been entered correctly.

In the next exercise you will compile and load a design that includes both SystemC and HDL
code.

Mixed SystemC and HDL Example
In this next example, you have a SystemC testbench that instantiates an HDL module. In order
for the SystemC testbench to interface properly with the HDL module, you must create a stub
module, a foreign module declaration. You will use the scgenmod utility to create the foreign
module declaration. Finally, you will link the created C object files using sccom -link.

1. Create a new exercise directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory, then copy all files from
<install_dir>/examples/systemc/sc_vlog into the new directory.

If you have a VHDL license, copy the files in <install_dir>/examples/systemc/sc_vhdl
instead.

2. Start QuestaSim and change to the exercise directory

Simulating Designs With SystemC
Mixed SystemC and HDL Example

Questa SV/AFV Tutorial, v6.4c 71

If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a. Type vsim at a command shell prompt.

If the Welcome to QuestaSim dialog appears, click Close.

b. Select File > Change Directory and change to the directory you created in step 1.

3. Set the working library.

a. Type vlib work in the QuestaSim Transcript window to create the working library.

4. Compile the design.

a. Verilog:
Type vlog *.v in the QuestaSim Transcript window to compile all Verilog source
files.

VHDL:
Type vcom -93 *.vhd in the QuestaSim Transcript window to compile all VHDL
source files.

5. Create the foreign module declaration (SystemC stub) for the Verilog module ringbuf.

a. Verilog:
Type scgenmod -map “scalar=bool” ringbuf > ringbuf.h at the QuestaSim>
prompt.

The -map “scalar=bool” argument is used to generate boolean scalar port types
inside the foreign module declaration. See scgenmod for more information.

VHDL:
Type scgenmod ringbuf > ringbuf.h at the QuestaSim> prompt.

The output is redirected to the file ringbuf.h (Figure 6-3).

Questa SV/AFV Tutorial, v6.4c72

Simulating Designs With SystemC
Mixed SystemC and HDL Example

Figure 6-3. The ringbuf.h File.

The test_ringbuf.h file is included in test_ringbuf.cpp, as shown in Figure 6-4.

Figure 6-4. The test_ringbuf.cpp File

6. Compile and link all SystemC files, including the generated ringbuf.h.

a. Type sccom -g test_ringbuf.cpp at the QuestaSim> prompt.

The test_ringbuf.cpp file contains an include statement for test_ringbuf.h and a
required SC_MODULE_EXPORT(top) statement, which informs QuestaSim that
the top-level module is SystemC.

Simulating Designs With SystemC
Mixed SystemC and HDL Example

Questa SV/AFV Tutorial, v6.4c 73

b. Type sccom -link at the QuestaSim> prompt to perform the final link on the
SystemC objects.

7. Load the design.

a. Enter the following command at the QuestaSim> prompt in the Transcript pane.

vsim -voptargs="+acc" test_ringbuf

The -voptargs=”+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note
By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

8. If necessary, you may close the Locals, Profile, and Watch panes of the Main window.
Make sure the Objects pane is open and the Process pane is open in “Active” mode, as
shown in Figure 6-5. To open or close these windows, use the View menu.

Figure 6-5. The test_ringbuf Design

Questa SV/AFV Tutorial, v6.4c74

Simulating Designs With SystemC
Viewing SystemC Objects in the GUI

Viewing SystemC Objects in the GUI
SystemC objects are denoted in the QuestaSim GUI with a green ’S’ in the Library tab and a
green square, circle, or diamond icon elsewhere.

1. View Workspace and objects.

a. Click on the Library tab in the Workspace pane of the Main window.

SystemC objects have a green ’S’ next to their names (Figure 6-6).

Figure 6-6. SystemC Objects in the work Library

2. Observe window linkages.

a. Click on the sim tab in the Workspace pane of the Main window.

b. Select the clock instance in the sim tab (Figure 6-7).

The Objects window updates to show the associated SystemC or HDL objects.

Simulating Designs With SystemC
Viewing SystemC Objects in the GUI

Questa SV/AFV Tutorial, v6.4c 75

Figure 6-7. SystemC Objects in the sim Tab of the Workspace

3. Add objects to the Wave window.

a. Right-click test_ringbuf in the sim tab of the Workspace and select Add > To Wave
> All items in region.

Setting Breakpoints and Stepping in the Source Window
As with HDL files, you can set breakpoints and step through SystemC files in the Source
window. In the case of SystemC, QuestaSim uses C Debug, an interface to the open-source gdb
debugger. Refer to the C Debug chapter in the User’s Manual for complete details.

1. Before we set a breakpoint, we must disable the Auto Lib Step Out feature, which is on
by default. With Auto Lib Step Out, if you try to step into a standard C++ or SystemC
header file (modeltech/include/systemc), QuestaSim will automatically do a step-out.

a. Select Tools > C Debug > Allow lib step from the Main menus.

2. Set a breakpoint.

a. Double-click test_ringbuf in the sim tab of the Workspace to open the source file.

b. In the Source window:

Verilog: scroll to the area around line 150 of test_ringbuf.h.

VHDL: scroll to the area around line 155 of test_ringbuf.h.

Questa SV/AFV Tutorial, v6.4c76

Simulating Designs With SystemC
Viewing SystemC Objects in the GUI

c. Click in the line number column next to the red line number of the line containing
(shown in Figure 6-8) :

Verilog:bool var_dataerror_newval = actual.read()...

VHDL: sc_logic var_dataerror_newval = acutal.read ...

Note
QuestaSim recognizes that the file contains SystemC code and automatically launches C
Debug. There will be a slight delay while C Debug opens before the breakpoint appears.

Once the debugger is running, QuestaSim places a solid red ball next to the line
number (Figure 6-8).

Figure 6-8. Active Breakpoint in a SystemC File

3. Run and step through the code.

a. Type run 500 at the VSIM> prompt.

When the simulation hits the breakpoint, it stops running, highlights the line with a
blue arrow in the Source window (Figure 6-9), and issues a message like this in the
Transcript:

C breakpoint c.1
test_ringbuf::compare_data (this=0x1f13bc8) at
test_ringbuf.h:<151>

Simulating Designs With SystemC
Viewing SystemC Objects in the GUI

Questa SV/AFV Tutorial, v6.4c 77

Figure 6-9. Simulation Stopped at Breakpoint

b. Click the Step icon on the toolbar.

This steps the simulation to the next statement. Because the next statement is a
function call, QuestaSim steps into the function, which is in a separate file —
sc_signal.h (Figure 6-10).

Figure 6-10. Stepping into a Separate File

c. Click the Continue Run icon in the toolbar.

The breakpoint in test_ringbuf.h is hit again.

Examining SystemC Objects and Variables
To examine the value of a SystemC object or variable, you can use the examine command or
view the value in the Objects window.

1. View the value and type of an sc_signal.

Questa SV/AFV Tutorial, v6.4c78

Simulating Designs With SystemC
Viewing SystemC Objects in the GUI

a. Enter the show command at the CDBG > prompt to display a list of all design
objects, including their types, in the Transcript.

In this list, you’ll see that the type for dataerror is “boolean” (sc_logic for VHDL)
and counter is “int” (Figure 6-11).

Figure 6-11. Output of show Command

b. Enter the examine dataerror command at the CDBG > prompt.

The value returned is "true".

2. View the value of a SystemC variable.

a. Enter the examine counter command at the CDBG > prompt to view the value of
this variable.

The value returned is "-1".

Simulating Designs With SystemC
Viewing SystemC Objects in the GUI

Questa SV/AFV Tutorial, v6.4c 79

Removing a Breakpoint
1. Return to the Source window for test_ringbuf.h and right-click the red ball in the line

number column. Select Remove Breakpoint from the popup menu.

2. Click the Continue Run button again.

The simulation runs for 500 ns and waves are drawn in the Wave window (Figure 6-12).

If you are using the VHDL version, you might see warnings in the Main window
transcript. These warnings are related to VHDL value conversion routines and can be
ignored.

Figure 6-12. SystemC Primitive Channels in the Wave Window

Lesson Wrap-up

This concludes the lesson. Before continuing we need to quit the C debugger and end the
current simulation.

1. Select Tools > C Debug > Quit C Debug.

2. Select Simulate > End Simulation. Click Yes when prompted to confirm that you wish
to quit simulating.

Questa SV/AFV Tutorial, v6.4c80

Simulating Designs With SystemC
Viewing SystemC Objects in the GUI

Questa SV/AFV Tutorial, v6.4c 81

Chapter 7
Analyzing Waveforms

Introduction

The Wave window allows you to view the results of your simulation as HDL waveforms and
their values. The Wave window is divided into a number of panes (Figure 7-1). You can resize
the pathnames pane, the values pane, and the waveform pane by clicking and dragging the bar
between any two panes.

Figure 7-1. Panes of the Wave Window

waveform pane

cursor pane

values panepathnames pane

cursor names pane cursor values pane
cursor toolbox

Messages bar

Questa SV/AFV Tutorial, v6.4c82

Analyzing Waveforms
Loading a Design

Related Reading

User’s Manual sections: Wave Window and Recording Simulation Results With Datasets

Loading a Design
For the examples in this lesson, we have used the design simulated in Basic Simulation.

1. If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a. Type vsim at a UNIX shell prompt or use the QuestaSim icon in Windows.

If the Welcome to QuestaSim dialog appears, click Close.

2. Load the design.

a. Select File > Change Directory and open the directory you created in the “Basic
Simulation” lesson.

The work library should already exist.

b. Enter the following command at the QuestaSim> prompt in the Transcript pane.

vsim -voptargs="+acc" test_counter

The -voptargs=”+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note
By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

QuestaSim loads the design and adds sim and Files tabs to the Workspace.

Add Objects to the Wave Window
QuestaSim offers several methods for adding objects to the Wave window. In this exercise, you
will try different methods.

1. Add objects from the Objects pane.

a. Select an item in the Objects pane of the Main window, right-click, and then select
Add > To Wave > All items in region.

QuestaSim adds several signals to the Wave window.

2. Undock the Wave window.

Analyzing Waveforms
Add Objects to the Wave Window

Questa SV/AFV Tutorial, v6.4c 83

By default QuestaSim opens Wave windows as a tab in the MDI frame of the Main
window. You can change the default via the Preferences dialog (Tools > Edit
Preferences). Refer to the section Simulator GUI Preferences in the User’s Manual for
more information.

a. Click the undock button on the Wave pane (Figure 7-2).

The Wave pane becomes a standalone, un-docked window. You may need to resize
the window.

Figure 7-2. Undocking the Wave Window

3. Add objects using drag-and-drop.

You can drag an object to the Wave window from many other windows and panes (e.g.,
Workspace, Objects, and Locals).

a. In the Wave window, select Edit > Select All and then Edit > Delete.

b. Drag an instance from the sim tab of the Main window to the Wave window.

QuestaSim adds the objects for that instance to the Wave window.

c. Drag a signal from the Objects pane to the Wave window.

d. In the Wave window, select Edit > Select All and then Edit > Delete.

4. Add objects using a command.

a. Type add wave * at the VSIM> prompt.

QuestaSim adds all objects from the current region.

b. Run the simulation for awhile so you can see waveforms.

Questa SV/AFV Tutorial, v6.4c84

Analyzing Waveforms
Zooming the Waveform Display

Zooming the Waveform Display
Zooming lets you change the display range in the waveform pane. There are numerous methods
for zooming the display.

1. Zoom the display using various techniques.

a. Click the Zoom Mode icon on the Wave window toolbar.

b. In the waveform pane, click and drag down and to the right.

You should see blue vertical lines and numbers defining an area to zoom in
(Figure 7-3).

Figure 7-3. Zooming in with the Mouse Pointer

c. Select View > Zoom > Zoom Last.

The waveform pane returns to the previous display range.

d. Click the Zoom In 2x icon a few times.

e. In the waveform pane, click and drag up and to the right.

You should see a blue line and numbers defining an area to zoom out.

f. Select View > Zoom > Zoom Full.

Using Cursors in the Wave Window
Cursors mark simulation time in the Wave window. When QuestaSim first draws the Wave
window, it places one cursor at time zero. Clicking anywhere in the waveform pane brings that
cursor to the mouse location.

You can also add additional cursors; name, lock, and delete cursors; use cursors to measure time
intervals; and use cursors to find transitions.

Analyzing Waveforms
Using Cursors in the Wave Window

Questa SV/AFV Tutorial, v6.4c 85

First, dock the Wave window in the Main window by clicking the dock icon.

Working with a Single Cursor
1. Position the cursor by clicking and dragging.

a. Click the Select Mode icon on the Wave window toolbar.

b. Click anywhere in the waveform pane.

A cursor is inserted at the time where you clicked (Figure 7-4).

Figure 7-4. Working with a Single Cursor in the Wave Window

c. Drag the cursor and observe the value pane.

The signal values change as you move the cursor. This is perhaps the easiest way to
examine the value of a signal at a particular time.

d. In the waveform pane, drag the cursor to the right of a transition with the mouse
positioned over a waveform.

The cursor "snaps" to the nearest transition to the left. Cursors "snap" to a waveform
edge if you click or drag a cursor to within ten pixels of a waveform edge. You can
set the snap distance in the Window Preferences dialog (select Tools > Window
Preferences).

e. In the cursor pane, drag the cursor to the right of a transition (Figure 7-4).

The cursor doesn’t snap to a transition if you drag in the cursor pane.

2. Rename the cursor.

a. Right-click "Cursor 1" in the cursor name pane, and select and delete the text.

b. Type A and press Enter.

Questa SV/AFV Tutorial, v6.4c86

Analyzing Waveforms
Using Cursors in the Wave Window

The cursor name changes to "A" (Figure 7-5).

Figure 7-5. Renaming a Cursor

3. Jump the cursor to the next or previous transition.

a. Click signal count in the pathname pane.

b. Click the Find Next Transition icon on the Wave window toolbar.

The cursor jumps to the next transition on the currently selected signal.

c. Click the Find Previous Transition icon on the Wave window toolbar.

The cursor jumps to the previous transition on the currently selected signal.

Working with Multiple Cursors
1. Add a second cursor.

a. Click the Add Cursor icon on the Wave window toolbar.

b. Right-click the name of the new cursor and delete the text.

c. Type B and press Enter.

d. Drag cursor B and watch the interval measurement change dynamically (Figure 7-6).

Analyzing Waveforms
Saving and Reusing the Window Format

Questa SV/AFV Tutorial, v6.4c 87

Figure 7-6. Interval Measurement Between Two Cursors

2. Lock cursor B.

a. Right-click cursor B in the cursor pane and select Lock B.

The cursor color changes to red and you can no longer drag the cursor (Figure 7-7).

Figure 7-7. A Locked Cursor in the Wave Window

3. Delete cursor B.

a. Right-click cursor B and select Delete B.

Saving and Reusing the Window Format
If you close the Wave window, any configurations you made to the window (e.g., signals added,
cursors set, etc.) are discarded. However, you can use the Save Format command to capture the

Questa SV/AFV Tutorial, v6.4c88

Analyzing Waveforms
Saving and Reusing the Window Format

current Wave window display and signal preferences to a .do file. You open the .do file later to
recreate the Wave window as it appeared when the file was created.

Format files are design-specific; use them only with the design you were simulating when they
were created.

1. Save a format file.

a. In the Wave window, select File > Save.

b. In the Pathname field of the Save Format dialog, leave the file name set to wave.do
and click OK.

c. Close the Wave window.

2. Load a format file.

a. In the Main window, select View > Wave.

b. Undock the window.

All signals and cursor(s) that you had set are gone.

c. In the Wave window, select File > Load.

d. In the Open Format dialog, select wave.do and click Open.

QuestaSim restores the window to its previous state.

e. Close the Wave window when you are finished by selecting File > Close Window.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Select Simulate > End Simulation. Click Yes.

Questa SV/AFV Tutorial, v6.4c 89

Chapter 8
Creating Stimulus With Waveform Editor

Introduction

The Waveform Editor creates stimulus for your design via interactive manipulation of
waveforms. You can then run the simulation with these edited waveforms or export them to a
stimulus file for later use.

In this lesson you will do the following:

• Load the counter design unit without a testbench

• Create waves via a wizard

• Edit waves interactively in the Wave window

• Export the waves to an HDL testbench and extended VCD file

• Run the simulation

• Re-simulate using the exported testbench and VCD file

Related Reading

User’s Manual Sections: Generating Stimulus with Waveform Editor and Wave Window.

Load a Design Unit
For the examples in this lesson, we will use part of the design simulated in Basic Simulation.

Note
You can also use the Waveform Editor prior to loading a design. Refer to the section
Using Waveform Editor Prior to Loading a Design in the User Manual for more
information.

1. If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a. Type vsim at a UNIX shell prompt or use the QuestaSim icon in Windows.

If the Welcome to QuestaSim dialog appears, click Close.

2. Open a Wave window.

a. Select View > Wave from the Main window menus.

Questa SV/AFV Tutorial, v6.4c90

Creating Stimulus With Waveform Editor
Create Graphical Stimulus with a Wizard

3. Load the counter design unit.

a. Select File > Change Directory and open the directory you created in Lesson 2.

The work library should already exist.

b. Enter the following command at the QuestaSim> prompt in the Transcript pane.

vsim -voptargs="+acc" counter

The -voptargs=”+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note
By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

QuestaSim loads the counter design unit and adds sim, Files, and Memories tabs to
the Workspace.

Create Graphical Stimulus with a Wizard
Waveform Editor includes a Create Pattern Wizard that walks you through the process of
creating editable waveforms.

1. Use the Create Pattern Wizard to create a clock pattern.

a. In the Objects pane, right click signal clk and select Create Wave (Figure 8-1).

Creating Stimulus With Waveform Editor
Create Graphical Stimulus with a Wizard

Questa SV/AFV Tutorial, v6.4c 91

Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane

This opens the Create Pattern Wizard dialog where you specify the type of pattern
(Clock, Repeater, etc.) and a start and end time.

b. The default pattern is Clock, which is what we need, so click Next (Figure 8-2).

Figure 8-2. Create Pattern Wizard

c. In the second dialog of the wizard, enter 1 for Initial Value. Leave everything else as
is and click Finish (Figure 8-3).

Questa SV/AFV Tutorial, v6.4c92

Creating Stimulus With Waveform Editor
Create Graphical Stimulus with a Wizard

Figure 8-3. Specifying Clock Pattern Attributes

A generated waveform appears in the Wave window (Figure 8-4). Notice the small
red dot on the waveform icon and the prefix "Edit:". These items denote an editable
wave. (You may want to undock the Wave window.)

Figure 8-4. The clk Waveform

2. Create a second wave using the wizard.

a. Right-click signal reset in the Objects pane and select Create Wave from the popup
menu.

b. Select Constant for the pattern type and click Next.

c. Enter 0 for the Value and click Finish.

A second generated waveform appears in the Wave window (Figure 8-5).

Creating Stimulus With Waveform Editor
Edit Waveforms in the Wave Window

Questa SV/AFV Tutorial, v6.4c 93

Figure 8-5. The reset Waveform

Edit Waveforms in the Wave Window
Waveform Editor gives you numerous commands for interactively editing waveforms (e.g.,
invert, mirror, stretch edge, cut, paste, etc.). You can access these commands via the menus,
toolbar buttons, or via keyboard and mouse shortcuts. You will try out several commands in this
part of the exercise.

1. Insert a pulse on signal reset.

a. Click the Edit Mode icon in the toolbar.

b. In the Wave window, click the reset signal so it is selected.

c. Click the Insert Pulse icon in the toolbar.

Or, in the waveform pane of the Wave window, right-click on the reset signal
waveform and select Wave > Insert Pulse.

d. In the Edit Insert Pulse dialog, enter 100 in the Duration field and 100 in the Time
field (Figure 8-6), and click OK.

Figure 8-6. Edit Insert Pulse Dialog

Signal reset now goes high from 100 ns to 200 ns (Figure 8-7).

Questa SV/AFV Tutorial, v6.4c94

Creating Stimulus With Waveform Editor
Edit Waveforms in the Wave Window

Figure 8-7. Signal reset with an Inserted Pulse

2. Stretch an edge on signal clk.

a. Click the signal clk waveform just to the right of the transition at 350 ns. The cursor
should snap to the transition at 350 ns.

b. Right-click that same transition and select Wave > Stretch Edge from the popup
menu.

If the command is dimmed out, the cursor probably isn’t on the edge at 350 ns.

c. In the Edit Stretch Edge dialog, enter 50 for Duration, make sure the Time field
shows 350, and then click OK (Figure 8-8).

Figure 8-8. Edit Stretch Edge Dialog

The wave edge stretches so it is high from 300 to 400 ns (Figure 8-9).

Creating Stimulus With Waveform Editor
Edit Waveforms in the Wave Window

Questa SV/AFV Tutorial, v6.4c 95

Figure 8-9. Stretching an Edge on the clk Signal

Note the difference between stretching and moving an edge — the Stretch command
moves an edge by moving other edges on the waveform (either increasing waveform
duration or deleting edges at the beginning of simulation time); the Move command
moves an edge but does not move other edges on the waveform. You should see in
the Wave window that the waveform for signal clk now extends to 1050 ns.

3. Delete an edge.

a. Click signal clk just to the right of the transition at 400 ns.

The cursor should "snap" to 400 ns.

b. Click the Delete Edge icon.

This opens the Edit Delete Edge dialog. The Time is already set to 400 ns. Click
OK. The edge is deleted and clk now stays high until 500 ns (Figure 8-10).

Figure 8-10. Deleting an Edge on the clk Signal

4. Undo and redo an edit.

a. Click the Undo icon.

Questa SV/AFV Tutorial, v6.4c96

Creating Stimulus With Waveform Editor
Save and Reuse the Wave Commands

The Edit Undo dialog opens, allowing you to select the Undo Count - the number of
past actions to undo. Click OK with the Undo Count set to 1 and the deleted edge at
400 ns reappears.

b. Click the Redo icon.

The edge is deleted again. You can undo and redo any number of editing operations
except extending all waves and changing drive types. Those two edits cannot be
undone.

Save and Reuse the Wave Commands
You can save the commands that QuestaSim used to create the waveforms. You can load this
"format" file at a later time to re-create the waves. In this exercise, we will save the commands,
quit and reload the simulation, and then open the format file.

1. Save the wave commands to a format file.

a. Select File > Close in the menu bar and you will be prompted to save the wave
commands.

b. Click Yes.

c. Type waveedit.do in the File name field of the Save Commands dialog that opens
and then click Save.

This saves a DO file named waveedit.do to the current directory and closes the Wave
window.

2. Quit and then reload the simulation.

a. In the Main window, select Simulate > End Simulation, and click Yes to confirm
you want to quit simulating.

b. To reload the simulation, enter the following command at the QuestaSim> prompt.

vsim -voptargs="+acc" counter

3. Open the format file.

a. Select View > Wave to open the Wave window.

b. Select File > Load from the menu bar.

c. Double-click waveedit.do to open the file.

The waves you created earlier in the lesson reappear. If waves do not appear, you
probably did not load the counter design unit.

Creating Stimulus With Waveform Editor
Exporting the Created Waveforms

Questa SV/AFV Tutorial, v6.4c 97

Exporting the Created Waveforms
At this point you can run the simulation or you can export the created waveforms to one of four
stimulus file formats. You will run the simulation in a minute but first let us export the created
waveforms so we can use them later in the lesson.

1. Export the created waveforms in an HDL testbench format.

a. Select File > Export > Waveform.

b. Select Verilog Testbench (or VHDL Testbench if you are using the VHDL sample
files).

c. Enter 1000 for End Time if necessary.

d. Enter export in the File Name field and click OK (Figure 8-11).

Figure 8-11. The Export Waveform Dialog

QuestaSim creates a file named export.v (or export.vhd) in the current directory.
Later in the lesson we will compile and simulate the file.

2. Export the created waveforms in an extended VCD format.

a. Select File > Export > Waveform.

b. Select EVCD File.

c. Enter 1000 for End Time if necessary and click OK.

QuestaSim creates an extended VCD file named export.vcd. We will import this file
later in the lesson.

Run the Simulation

Once you have finished editing the waveforms, you can run the simulation straight away.

Questa SV/AFV Tutorial, v6.4c98

Creating Stimulus With Waveform Editor
Simulating with the Testbench File

1. Add a design signal.

a. In the Objects pane, right-click count and select Add > To Wave > Selected items.

The signal is added to the Wave window.

2. Run the simulation.

a. Click the Run -All icon.

The simulation runs for 1000 ns and the waveform is drawn for
sim:/counter/count (Figure 8-12).

Figure 8-12. The counter Waveform Reacts to Stimulus Patterns

Look at the signal transitions for count from 300 ns to 500 ns. The transitions occur
when clk goes high, and you can see that count follows the pattern you created when
you edited clk by stretching and deleting edges.

3. Quit the simulation.

a. In the Main window, select Simulate > End Simulation, and click Yes to confirm
you want to quit simulating.

Simulating with the Testbench File
Earlier in the lesson you exported the created waveforms to a testbench file. In this exercise you
will compile and load the testbench and then run the simulation.

1. Compile and load the testbench.

a. At the QuestaSim prompt, enter vlog export.v (or vcom export.vhd if you are
working with VHDL files).

You should see a design unit named export appear in the Library tab (Figure 8-13).

Creating Stimulus With Waveform Editor
Simulating with the Testbench File

Questa SV/AFV Tutorial, v6.4c 99

Figure 8-13. The export Testbench Compiled into the work Library

b. Enter the following command at the QuestaSim> prompt.

vsim -voptargs="+acc" export

2. Add waves and run the design.

a. At the VSIM> prompt, type add wave *.

b. Next type run 1000.

The waveforms in the Wave window match those you saw in the last exercise
(Figure 8-14).

Figure 8-14. Waves from Newly Created Testbench

3. Quit the simulation.

a. In the Main window, select Simulate > End Simulation, and click Yes to confirm
you want to quit simulating.

Questa SV/AFV Tutorial, v6.4c100

Creating Stimulus With Waveform Editor
Importing an EVCD File

Importing an EVCD File
Earlier in the lesson you exported the created waveforms to an extended VCD file. In this
exercise you will use that file to stimulate the counter design unit.

1. Load the counter design unit and add waves.

a. Enter the following command at the QuestaSim> prompt.

vsim -voptargs="+acc" counter

b. In the Objects pane, right-click count and select Add > To Wave > Selected items.

2. Import the VCD file.

a. Make sure the Wave window is active, then select File > Import > EVCD from the
menu bar.

b. Double-click export.vcd.

The created waveforms draw in the Wave window (Figure 8-15).

Figure 8-15. EVCD File Loaded in Wave Window

c. Click the Run -All icon.

The simulation runs for 1000 ns and the waveform is drawn for
sim:/counter/count (Figure 8-16).

Creating Stimulus With Waveform Editor
Importing an EVCD File

Questa SV/AFV Tutorial, v6.4c 101

Figure 8-16. Simulation results with EVCD File

When you import an EVCD file, signal mapping happens automatically if signal
names and widths match. If they do not, you have to manually map the signals. Refer
to the section Signal Mapping and Importing EVCD Files in the User’s Manual for
more information.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. In the Main window, select Simulate > End Simulation. Click Yes.

Questa SV/AFV Tutorial, v6.4c102

Creating Stimulus With Waveform Editor
Importing an EVCD File

Questa SV/AFV Tutorial, v6.4c 103

Chapter 9
Debugging With The Dataflow Window

Introduction

The Dataflow window allows you to explore the "physical" connectivity of your design; to trace
events that propagate through the design; and to identify the cause of unexpected outputs. The
window displays processes; signals, nets, and registers; and interconnect.

Note
The functionality described in this lesson requires a dataflow license feature in your
QuestaSim license file. Please contact your Mentor Graphics sales representative if you
currently do not have such a feature.

Design Files for this Lesson

The sample design for this lesson is a testbench that verifies a cache module and how it works
with primary memory. A processor design unit provides read and write requests.

The pathnames to the files are as follows:

Verilog – <install_dir>/examples/tutorials/verilog/dataflow

VHDL – <install_dir>/examples/tutorials/vhdl/dataflow

This lesson uses the Verilog version in the examples. If you have a VHDL license, use the
VHDL version instead. When necessary, we distinguish between the Verilog and VHDL
versions of the design.

Related Reading

User’s Manual Sections: Debugging with the Dataflow Window and Dataflow Window.

Compile and Load the Design

In this exercise you will use a DO file to compile and load the design.

1. Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/examples/tutorials/verilog/dataflow to the new directory.

Questa SV/AFV Tutorial, v6.4c104

Debugging With The Dataflow Window
Exploring Connectivity

If you have a VHDL license, copy the files in
<install_dir>/examples/tutorials/vhdl/dataflow instead.

2. Start QuestaSim and change to the exercise directory.

If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a. Type vsim at a UNIX shell prompt or use the QuestaSim icon in Windows.

If the Welcome to QuestaSim dialog appears, click Close.

b. Select File > Change Directory and change to the directory you created in step 1.

3. Execute the lesson DO file.

a. Type do run.do at the QuestaSim> prompt.

The DO file does the following:

• Creates the working library

• Compiles the design files

• Opens the Dataflow window

• Loads the design into the simulator

• Adds signals to the Wave window

• Logs all signals in the design

• Runs the simulation

Exploring Connectivity
A primary use of the Dataflow window is exploring the "physical" connectivity of your design.
You do this by expanding the view from process to process. This allows you to see the
drivers/receivers of a particular signal, net, or register.

1. Add a signal to the Dataflow window.

a. Make sure instance p is selected in the sim tab of the Workspace pane.

b. Drag signal strb from the Objects pane to the Dataflow window (Figure 9-1).

Debugging With The Dataflow Window
Exploring Connectivity

Questa SV/AFV Tutorial, v6.4c 105

Figure 9-1. A Signal in the Dataflow Window

2. Explore the design.

a. Double-click the net highlighted in red.

The view expands to display the processes that are connected to strb (Figure 9-2).

Figure 9-2. Expanding the View to Display Connected Processes

Select signal test on process #NAND#50 (labeled line_71 in the VHDL version) and
click the Expand net to all drivers icon.

Questa SV/AFV Tutorial, v6.4c106

Debugging With The Dataflow Window
Tracing Events

Figure 9-3. The test Net Expanded to Show All Drivers

Notice that after the display expands, the signal line for strb is highlighted in green.
This highlighting indicates the path you have traversed in the design.

Select signal oen on process #ALWAYS#155(labeled line_84 in the VHDL version),
and click the Expand net to all readers icon.

Continue exploring if you wish.

When you are done, click the Erase All icon.

Tracing Events
Another useful debugging feature is tracing events that contribute to an unexpected output
value. Using the Dataflow window’s embedded wave viewer, you can trace backward from a
transition to see which process or signal caused the unexpected output.

1. Add an object to the Dataflow window.

a. Make sure instance p is selected in the sim tab of the Main window.

b. Drag signal t_out from the Objects pane into the Dataflow window.

c. Undock the Dataflow window.

d. Select View > Show Wave in the Dataflow window to open the Wave Viewer
(Figure 9-4). You may need to increase the size of the Dataflow window and scroll
the panes to see everything.

Debugging With The Dataflow Window
Tracing Events

Questa SV/AFV Tutorial, v6.4c 107

Figure 9-4. The embedded wave viewer pane

2. Trace the inputs of the nand gate.

a. Select process #NAND#50 (labeled line_71 in the VHDL version) in the dataflow
pane. All input and output signals of the process are displayed in the wave viewer
(Figure 9-5).

Questa SV/AFV Tutorial, v6.4c108

Debugging With The Dataflow Window
Tracing Events

Figure 9-5. Signals Added to the Wave Viewer Automatically

b. In the wave view, scroll to the last transition of signal t_out.

c. Click just to the right of the last transition of signal t_out. The cursor should snap to
time 2785 ns.

d. Click on the t_out signal in the dataflow diagram to highlight it.

e. Select Trace > Trace next event to trace the first contributing event.

QuestaSim adds a cursor marking the last event, the transition of the strobe to 0 at
2745 ns, which caused the output of 1 on t_out (Figure 9-6).

Debugging With The Dataflow Window
Tracing Events

Questa SV/AFV Tutorial, v6.4c 109

Figure 9-6. Cursor in Wave Viewer Marks Last Event

f. Select Trace > Trace next event two more times.

g. Select Trace > Trace event set.

The dataflow pane sprouts to the preceding process and shows the input driver of the
strb signal (Figure 9-7). Notice, also, that the wave viewer now shows the input and
output signals of the newly selected process.

Figure 9-7. Tracing the Event Set

Questa SV/AFV Tutorial, v6.4c110

Debugging With The Dataflow Window
Tracing an X (Unknown)

You can continue tracing events through the design in this manner: select Trace
next event until you get to a transition of interest in the wave viewer, and then select
Trace event set to update the dataflow pane.

3. Select File > Close Window to close the Dataflow window.

Tracing an X (Unknown)
The Dataflow window lets you easily track an unknown value (X) as it propagates through the
design. The Dataflow window is linked to the Wave window, so you can view signals in the
Wave window and then use the Dataflow window to track the source of a problem. As you
traverse your design in the Dataflow window, appropriate signals are added automatically to the
Wave window.

1. View t_out in the Wave and Dataflow windows.

a. Scroll in the Wave window until you can see /top/p/t_out.

t_out goes to an unknown state, StX, at 2065 ns and continues transitioning between
1 and unknown for the rest of the run (Figure 9-8). The red color of the waveform
indicates an unknown value.

Figure 9-8. A Signal with Unknown Values

b. Double-click the t_out waveform at the last transition of signal t_out at 2785 ns.

This automatically opens a dataflow tab in the MDI frame and displays t_out, its
associated process, and its waveform. You may need to increase the size of the
Dataflow window and scroll the panes to see everything.

c. Undock the Dataflow window.

Debugging With The Dataflow Window
Tracing an X (Unknown)

Questa SV/AFV Tutorial, v6.4c 111

d. Move the cursor in the Wave window.

As previously mentioned the Wave and Dataflow windows are designed to work
together. As you move the cursor in the Wave, the value of t_out changes in the flow
diagram portion of the Dataflow window.

e. Move the cursor in the Wave Viewer of the Dataflow window to a time when t_out
is unknown (e.g., 2725 ns). If the Wave Viewer is not showing, click the Show
Wave icon or select View > Show Wave.

2. Trace the unknown.

a. In the Dataflow window, make sure t_out is selected and then select Trace >
ChaseX.

The design expands to show the source of the unknown (Figure 9-9). In this case
there is a HiZ (U in the VHDL version) on input signal test_in and a 0 on input
signal _rw (bar_rw in the VHDL version). This causes the test2 output signal to
resolve to an unknown state (StX). The unknown state propagates through the design
to t_out.

Figure 9-9. ChaseX Identifies Cause of Unknown on t_out

Scroll to the bottom of the Wave window, and you will see that all of the signals
contributing to the unknown value have been added.

3. Clear the Dataflow window before continuing.

a. Click the Erase All icon to clear the Dataflow view.

Questa SV/AFV Tutorial, v6.4c112

Debugging With The Dataflow Window
Displaying Hierarchy in the Dataflow Window

b. Click the Show Wave icon to close the Wave view of the Dataflow window.

Displaying Hierarchy in the Dataflow Window
You can display connectivity in the Dataflow window using hierarchical instances. You enable
this by modifying the options prior to adding objects to the window.

1. Change options to display hierarchy.

a. With the Dataflow window undocked, select Tools > Options from the Dataflow
window menu bar.

With the Dataflow window docked, and the dataflow tab selected in the MDI frame,
select Dataflow > Dataflow Preferences > Options from the Main window menus.

b. Check Show Hierarchy and then click OK.

2. Add signal t_out to the Dataflow window.

a. Type add dataflow /top/p/t_out at the VSIM> prompt.

The Dataflow window will display t_out and all hierarchical instances (Figure 9-10).

Debugging With The Dataflow Window
Displaying Hierarchy in the Dataflow Window

Questa SV/AFV Tutorial, v6.4c 113

Figure 9-10. Displaying Hierarchy in the Dataflow Window

Questa SV/AFV Tutorial, v6.4c114

Debugging With The Dataflow Window
Displaying Hierarchy in the Dataflow Window

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Type quit -sim at the VSIM> prompt.

Questa SV/AFV Tutorial, v6.4c 115

Chapter 10
Viewing And Initializing Memories

Introduction

In this lesson you will learn how to view and initialize memories in QuestaSim. QuestaSim
defines and lists as memories any of the following:

• reg, wire, and std_logic arrays

• Integer arrays

• Single dimensional arrays of VHDL enumerated types other than std_logic

Design Files for this Lesson

The QuestaSim installation comes with Verilog and VHDL versions of the example design. The
files are located in the following directories:

Verilog – <install_dir>/examples/tutorials/verilog/memory

VHDL – <install_dir>/examples/tutorials/vhdl/memory

This lesson uses the Verilog version for the exercises. If you have a VHDL license, use the
VHDL version instead.

Related Reading

User’s Manual Section: Memory Panes.

Reference Manul commands: mem display, mem load, mem save, and radix.

Compile and Load the Design

1. Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/examples/tutorials/verilog/memory to the new directory.

If you have a VHDL license, copy the files in
<install_dir>/examples/tutorials/vhdl/memory instead.

2. Start QuestaSim and change to the exercise directory.

Questa SV/AFV Tutorial, v6.4c116

Viewing And Initializing Memories
View a Memory and its Contents

If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a. Type vsim at a UNIX shell prompt or use the QuestaSim icon in Windows.

If the Welcome to QuestaSim dialog appears, click Close.

b. Select File > Change Directory and change to the directory you created in step 1.

3. Create the working library and compile the design.

a. Type vlib work at the QuestaSim> prompt.

b. Verilog:
Type vlog sp_syn_ram.v dp_syn_ram.v ram_tb.v at the QuestaSim> prompt.

VHDL:
Type vcom -93 sp_syn_ram.vhd dp_syn_ram.vhd ram_tb.vhd at the QuestaSim>
prompt.

4. Load the design.

a. Enter the following command at the QuestaSim> prompt in the Transcript window.

vsim -voptargs="+acc" ram_tb

The -voptargs=”+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note
By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

View a Memory and its Contents
The Memories tab of the Main window lists all memories in the design when the design is
loaded; with the range, depth, and width of each memory displayed.

VHDL: The radix for enumerated types is Symbolic. To change the radix to binary for the
purposes of this lesson, type the following command at the VSIM> prompt:

radix bin

1. Open a Memory instance to show its contents.

a. Double-click the /ram_tb/spram1/mem instance in the memories list to view its
contents in the MDI frame.

A mem tab is created in the MDI frame to display the memory contents. The data are
all X (0 in VHDL) since you have not yet simulated the design. The first column

Viewing And Initializing Memories
View a Memory and its Contents

Questa SV/AFV Tutorial, v6.4c 117

(blue hex characters) lists the addresses (Figure 10-1), and the remaining columns
show the data values.

Figure 10-1. The mem Tab in the MDI Frame Shows Addresses and Data

b. Double-click instance /ram_tb/spram2/mem in the Memories tab of the Workspace,
This creates a new tab in the MDI frame called mem(1) that contains the addresses
and data for the spram2 instance. Each time you double-click a new memory
instance in the Workspace, a new tab is created for that instance in the MDI frame.

2. Simulate the design.

a. Click the run -all icon in the Main window.

b. Click the mem tab of the MDI frame to bring the /ram_tb/spram1/mem to the
foreground. The data fields now show values (Figure 10-2).

Figure 10-2. The Memory Display Updates with the Simulation

VHDL:
In the Transcript pane, you will see NUMERIC_STD warnings that can be ignored and

Questa SV/AFV Tutorial, v6.4c118

Viewing And Initializing Memories
View a Memory and its Contents

an assertion failure that is functioning to stop the simulation. The simulation itself has
not failed.

3. Change the address radix and the number of words per line for instance
/ram_tb/spram1/mem.

a. Right-click anywhere in the Memory Contents pane and select Properties.

b. The Properties dialog box opens (Figure 10-3).

Figure 10-3. Changing the Address Radix

c. For the Address Radix, select Decimal. This changes the radix for the addresses
only.

d. Select Words per line and type 1 in the field.

e. Click OK.

You can see the results of the settings in Figure 10-4. If the figure doesn’t match what
you have in your QuestaSim session, check to make sure you set the Address Radix
rather than the Data Radix. Data Radix should still be set to Symbolic, the default.

Viewing And Initializing Memories
View a Memory and its Contents

Questa SV/AFV Tutorial, v6.4c 119

Figure 10-4. New Address Radix and Line Length

Navigate Within the Memory
You can navigate to specific memory address locations, or to locations containing particular
data patterns. First, you will go to a specific address.

1. Use Goto to find a specific address.

a. Right-click anywhere in address column and select Goto (Figure 10-5).

The Goto dialog box opens in the data pane.

Figure 10-5. Goto Dialog

b. Type 30 in the Goto Address field.

c. Click OK.

The requested address appears in the top line of the window.

2. Edit the address location directly.

Questa SV/AFV Tutorial, v6.4c120

Viewing And Initializing Memories
View a Memory and its Contents

a. To quickly move to a particular address, do the following:

i. Double click address 38 in the address column.

ii. Enter address 100 (Figure 10-6).

Figure 10-6. Editing the Address Directly

iii. Press <Enter> on your keyboard.

The pane scrolls to that address.

3. Now, let’s find a particular data entry.

a. Right-click anywhere in the data column and select Find.

The Find in dialog box opens (Figure 10-7).

Figure 10-7. Searching for a Specific Data Value

Viewing And Initializing Memories
Export Memory Data to a File

Questa SV/AFV Tutorial, v6.4c 121

b. Type 11111010 in the Find data: field and click Find Next.

The data scrolls to the first occurrence of that address. Click Find Next a few more
times to search through the list.

c. Click Close to close the dialog box.

Export Memory Data to a File
You can save memory data to a file that can be loaded at some later point in simulation.

1. Export a memory pattern from the /ram_tb/spram1/mem instance to a file.

a. Make sure /ram_tb/spram1/mem is open and selected in the MDI frame.

b. Select File > Export > Memory Data to bring up the Export Memory dialog box
(Figure 10-8).

Questa SV/AFV Tutorial, v6.4c122

Viewing And Initializing Memories
Export Memory Data to a File

Figure 10-8. Export Memory Dialog

c. For the Address Radix, select Decimal.

d. For the Data Radix, select Binary.

e. For the Line Wrap, set to 1 word per line.

f. Type data_mem.mem into the Filename field.

g. Click OK.

You can view the exported file in any editor.

Memory pattern files can be exported as relocatable files, simply by leaving out the
address information. Relocatable memory files can be loaded anywhere in a memory
because no addresses are specified.

Viewing And Initializing Memories
Initialize a Memory

Questa SV/AFV Tutorial, v6.4c 123

2. Export a relocatable memory pattern file from the /ram_tb/spram2/mem instance.

a. Select the mem(1) tab in the MDI pane to see the data for the /ram_tb/spram2/mem
instance.

b. Right-click on the memory contents to open a popup menu and select Properties.

c. In the Properties dialog, set the Address Radix to Decimal; the Data Radix to
Binary; and the Line Wrap to 1 Words per Line. Click OK to accept the changes
and close the dialog.

d. Select File > Export > Memory Data to bring up the Export Memory dialog box.

e. For the Address Range, specify a Start address of 0 and End address of 250.

f. For the File Format, select MTI and click No addresses to create a memory pattern
that you can use to relocate somewhere else in the memory, or in another memory.

g. For Address Radix select Decimal, and for Data Radix select Binary.

h. For the Line Wrap, set 1 Words per Line.

i. Enter the file name as reloc.mem, then click OK to save the memory contents and
close the dialog. You will use this file for initialization in the next section.

Initialize a Memory
In QuestaSim, it is possible to initialize a memory using one of three methods: from an exported
memory file, from a fill pattern, or from both.

First, let’s initialize a memory from a file only. You will use one you exported previously,
data_mem.mem.

1. View instance /ram_tb/spram3/mem.

a. Double-click the /ram_tb/spram3/mem instance in the Memories tab.

This will open a new tab – mem(2) – in the MDI frame to display the contents of
/ram_tb/spram3/mem. Scan these contents so you can identify changes once the
initialization is complete.

b. Right-click and select Properties to bring up the Properties dialog.

c. Change the Address Radix to Decimal, Data Radix to Binary, Line Wrap to 1
Words per Line, and click OK.

2. Initialize spram3 from a file.

a. Right-click anywhere in the data column and select Import to bring up the Import
Memory dialog box (Figure 10-9).

Questa SV/AFV Tutorial, v6.4c124

Viewing And Initializing Memories
Initialize a Memory

Figure 10-9. Import Memory Dialog

The default Load Type is File Only.

b. Type data_mem.mem in the Filename field.

c. Click OK.

The addresses in instance /ram_tb/spram3/mem are updated with the data from
data_mem.mem (Figure 10-10).

Viewing And Initializing Memories
Initialize a Memory

Questa SV/AFV Tutorial, v6.4c 125

Figure 10-10. Initialized Memory from File and Fill Pattern

In this next step, you will experiment with importing from both a file and a fill pattern.
You will initialize spram3 with the 250 addresses of data you exported previously into
the relocatable file reloc.mem. You will also initialize 50 additional address entries with
a fill pattern.

3. Import the /ram_tb/spram3/mem instance with a relocatable memory pattern
(reloc.mem) and a fill pattern.

a. Right-click in the data column of the mem(2) tab and select Import to bring up the
Import Memory dialog box.

b. For Load Type, select Both File and Data.

c. For Address Range, select Addresses and enter 0 as the Start address and 300 as the
End address.

This means that you will be loading the file from 0 to 300. However, the reloc.mem
file contains only 251 addresses of data. Addresses 251 to 300 will be loaded with
the fill data you specify next.

d. For File Load, select the MTI File Format and enter reloc.mem in the Filename
field.

e. For Data Load, select a Fill Type of Increment.

f. In the Fill Data field, set the seed value of 0 for the incrementing data.

g. Click OK.

h. View the data near address 250 by double-clicking on any address in the Address
column and entering 250.

You can see the specified range of addresses overwritten with the new data. Also, you
can see the incrementing data beginning at address 251 (Figure 10-11).

Questa SV/AFV Tutorial, v6.4c126

Viewing And Initializing Memories
Interactive Debugging Commands

Figure 10-11. Data Increments Starting at Address 251

Now, before you leave this section, go ahead and clear the memory instances already
being viewed.

4. Right-click somewhere in the mem(2) pane and select Close All.

Interactive Debugging Commands
The memory panes can also be used interactively for a variety of debugging purposes. The
features described in this section are useful for this purpose.

1. Open a memory instance and change its display characteristics.

a. Double-click instance /ram_tb/dpram1/mem in the Memories tab.

b. Right-click in the memory contents pane and select Properties.

c. Change the Address and Data Radix to Hexadecimal.

d. Select Words per line and enter 2.

e. Click OK. The result should be as in Figure 10-12.

Viewing And Initializing Memories
Interactive Debugging Commands

Questa SV/AFV Tutorial, v6.4c 127

Figure 10-12. Original Memory Content

2. Initialize a range of memory addresses from a fill pattern.

a. Right-click in the data column of /ram_tb/dpram1/mem contents pane and select
Change to open the Change Memory dialog (Figure 10-13).

Figure 10-13. Changing Memory Content for a Range of Addresses

b. Select Addresses and enter the start address as 0x00000006 and the end address as
0x00000009. The "0x" hex notation is optional.

c. Select Random as the Fill Type.

d. Enter 0 as the Fill Data, setting the seed for the Random pattern.

e. Click OK.

The data in the specified range are replaced with a generated random fill pattern
(Figure 10-14).

Questa SV/AFV Tutorial, v6.4c128

Viewing And Initializing Memories
Interactive Debugging Commands

Figure 10-14. Random Content Generated for a Range of Addresses

3. Change contents by highlighting.

You can also change data by highlighting them in the Address Data pane.

a. Highlight the data for the addresses 0x0000000c:0x0000000e, as shown in
Figure 10-15.

Figure 10-15. Changing Memory Contents by Highlighting

b. Right-click the highlighted data and select Change.

This brings up the Change memory dialog box (Figure 10-16). Note that the
Addresses field is already populated with the range you highlighted.

Viewing And Initializing Memories
Interactive Debugging Commands

Questa SV/AFV Tutorial, v6.4c 129

Figure 10-16. Entering Data to Change

c. Select Value as the Fill Type.

d. Enter the data values into the Fill Data field as follows: 34 35 36

e. Click OK.

The data in the address locations change to the values you entered (Figure 10-17).

Figure 10-17. Changed Memory Contents for the Specified Addresses

4. Edit data in place.

To edit only one value at a time, do the following:

a. Double click any value in the Data column.

b. Enter the desired value and press <Enter> on your keyboard.

If you needed to cancel the edit function, press the <Esc> key on your keyboard.

Questa SV/AFV Tutorial, v6.4c130

Viewing And Initializing Memories
Interactive Debugging Commands

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Select Simulate > End Simulation. Click Yes.

Questa SV/AFV Tutorial, v6.4c 131

Chapter 11
Analyzing Performance With The Profiler

Introduction

The Profiler identifies the percentage of simulation time spent in each section of your code as
well as the amount of memory allocated to each function and instance. With this information,
you can identify bottlenecks and reduce simulation time by optimizing your code. Users have
reported up to 75% reductions in simulation time after using the Profiler.

This lesson introduces the Profiler and shows you how to use the main Profiler commands to
identify performance bottlenecks.

Note
The functionality described in this tutorial requires a profile license feature in your
QuestaSim license file. Please contact your Mentor Graphics sales representative if you
currently do not have such a feature.

Design Files for this Lesson

The example design for this lesson consists of a finite state machine which controls a behavioral
memory. The testbench test_sm provides stimulus.

The QuestaSim installation comes with Verilog and VHDL versions of this design. The files are
located in the following directories:

Verilog – <install_dir>/examples/tutorials/verilog/profiler

VHDL – <install_dir>/examples/tutorials/vhdl/profiler_sm_seq

This lesson uses the Verilog version for the exercises. If you have a VHDL license, use the
VHDL version instead.

Related Reading

User’s Manual Chapters: Profiling Performance and Memory Use and Tcl and Macros (DO
Files).

Compile and Load the Design

1. Create a new directory and copy the tutorial files into it.

Questa SV/AFV Tutorial, v6.4c132

Analyzing Performance With The Profiler

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/examples/tutorials/verilog/profiler to the new directory.

If you have a VHDL license, copy the files in
<install_dir>/examples/tutorials/vhdl/profiler_sm_seq instead.

2. Start QuestaSim and change to the exercise directory.

If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a. Type vsim at a UNIX shell prompt or use the QuestaSim icon in Windows.

If the Welcome to QuestaSim dialog appears, click Close.

b. Select File > Change Directory and change to the directory you created in step 1.

3. Create the work library.

a. Type vlib work at the QuestaSim> prompt.

4. Compile the design files.

a. Verilog: Type vlog test_sm.v sm_seq.v sm.v beh_sram.v at the QuestaSim>
prompt.

VHDL: Type vcom -93 sm.vhd sm_seq.vhd sm_sram.vhd test_sm.vhd at the
QuestaSim> prompt.

5. Load the top-level design unit.

a. Enter vsim -voptargs="+acc" test_sm at the QuestaSim> prompt of the Transcript
pane.

The -voptargs=”+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note
By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

Run the Simulation

You will now run the simulation and view the profiling data.

1. Enable the statistical sampling profiler.

a. Select Tools > Profile > Performance or click the Performance Profiling icon in
the toolbar.

Analyzing Performance With The Profiler

Questa SV/AFV Tutorial, v6.4c 133

This must be done prior to running the simulation. QuestaSim is now ready to collect
performance data when the simulation is run.

2. Run the simulation.

a. Type run 1 ms at the VSIM> prompt.

Notice that the number of samples taken is displayed both in the Transcript and the
Main window status bar (Figure 11-1). (Your results may not match those in the
figure.) Also, QuestaSim reports the percentage of samples that were taken in your
design code (versus in internal simulator code).

Figure 11-1. Sampling Reported in the Transcript

3. Display the statistical performance data in the Profile pane.

a. Select View > Profiling > Profile.

The Profile pane (you may need to increase its size) displays four tab-selectable
views of the data–Ranked, Design Units, Call Tree, and Structural (Figure 11-2).
(Your results may not match those in the figure.)

Questa SV/AFV Tutorial, v6.4c134

Analyzing Performance With The Profiler

Figure 11-2. The Profile Window

The table below gives a description of the columns in each tab. For more details on
each pane, refer to the section Viewing Profiler Results in the User’s Manual.

Table 11-1. Columns in the Profile Window

Column Description

Count (Design Unit view only) quantity of design objects analyzed

Under(raw) the raw number of Profiler samples collected during the
execution of a function, including all support routines under
that function; or, the number of samples collected for an
instance, including all instances beneath it in the structural
hierarchy

In(raw) the raw number of Profiler samples collected during a
function or instance

Under(%) the ratio (as a percentage) of the samples collected during the
execution of a function and all support routines under that
function to the total number of samples collected; or, the ratio
of the samples collected during an instance, including all
instances beneath it in the structural hierarchy, to the total
number of samples collected

In(%) the ratio (as a percentage) of the total samples collected
during a function or instance

%Parent (not in the Ranked view) the ratio (as a percentage) of the
samples collected during the execution of a function or
instance to the samples collected in the parent function or
instance

Analyzing Performance With The Profiler

Questa SV/AFV Tutorial, v6.4c 135

Data in the Ranked view is sorted by default from highest to lowest percentage in the
In(%) column. In the Design Unit, Call Tree, and Structural views, data is sorted (by
default) according to the Under(%) column. You can click the heading of any
column to sort data by that column.

The "Tcl_*" entries are functions that are part of the internal simulation code. They
are not directly related to your HDL code.

b. Click the Design Unit tab to view the profile data organized by design unit.

Figure 11-3. Design Unit Performance Profile

c. Click the Call Tree tab to view the profile data in a hierarchical, function-call tree
display.

The results differ between the Verilog and VHDL versions of the design. In Verilog,
line 105 (test_sm.v:105) is taking the majority of simulation time. In VHDL,
test_sm.vhd:203 and sm.vhd:93 are taking the majority of the time.

Note
Your results may look slightly different as a result of the computer you’re using and
different system calls that occur during the simulation. Also, the line number reported
may be one or two lines off in the actual source file. This happens due to how the
stacktrace is decoded on different platforms.

d. Verilog: Right-click test_sm.v:105 and select Expand All from popup menu. This
expands the hierarchy of test_sm.v:105 and displays the functions that call it
(Figure 11-4).

VHDL: Right-click test_sm.vhd:203 and select Expand All from popup menu. This
expands the hierarchy of test_sm.vhd:203 and displays the functions that call it.

Questa SV/AFV Tutorial, v6.4c136

Analyzing Performance With The Profiler
View Profile Details

Figure 11-4. Expand the Hierarchical Function Call Tree

4. View the source code of a line that is using a lot of simulation time.

a. Verilog: Double-click test_sm.v:105. The Source window opens in the MDI frame
with line 105 displayed (Figure 11-5).

VHDL: Double-click test_sm.vhd:203. The Source window opens in the MDI frame
with line 203 displayed.

Figure 11-5. The Source Window Showing a Line from the Profile Data

View Profile Details
The Profile Details pane increases visibility into simulation performance. Right-clicking any
function in the Ranked or Call Tree views in the Profile pane opens a popup menu that includes
a Function Usage selection. When you select Function Usage, the Profile Details pane opens
and displays all instances that use the selected function.

Analyzing Performance With The Profiler
Filtering and Saving the Data

Questa SV/AFV Tutorial, v6.4c 137

1. View the Profile Details of a function in the Call Tree view.

a. Right-click the Tcl_WaitForEvent function and select Function Usage from the
popup menu.

The Profile Details pane displays all instances using function Tcl_WaitForEvent
(Figure 11-6). The statistical performance data show how much simulation time is
used by Tcl_Close in each instance.

Figure 11-6. Profile Details of the Function Tcl_Close

When you right-click a selected function or instance in the Structural pane, the popup menu
displays either a Function Usage selection or an Instance Usage selection, depending on the
object selected.

1. View the Profile Details of an instance in the Structural view.

a. Select the Structural tab to change to the Structural view.

b. Right-click test_sm and select Expand All from the popup menu.

c. Verilog: Right-click the sm_0 instance and select Instance Usage from the popup
menu. The Profile Details shows all instances with the same definition as
/test_sm/sm_seq0/sm_0 (Figure 11-7).

Figure 11-7. Profile Details of Function sm_0

VHDL: Right-click the dut instance and select Instance Usage from the popup
menu. The Profile Details shows all instances with the same definition as
/test_sm/dut.

Filtering and Saving the Data
As a last step, you will filter out lines that take less than 3% of the simulation time using the
Profiler toolbar, and then save the report data to a text file.

Questa SV/AFV Tutorial, v6.4c138

Analyzing Performance With The Profiler
Filtering and Saving the Data

1. Filter lines that take less than 3% of the simulation time.

a. Click the Call Tree tab of the Profile pane.

b. Change the Under(%) field to 3 (Figure 11-8).

Figure 11-8. The Profiler Toolbar

If you do not see these toolbar buttons, right-click in a blank area of the toolbar and
select Profile.

c. Click the Refresh Profile Data button.

QuestaSim filters the list to show only those lines that take 3% or more of the
simulation time (Figure 11-9).

Figure 11-9. The Filtered Profile Data

2. Save the report.

a. Click the save icon in the Profiler toolbar.

b. In the Profile Report dialog (Figure 11-10), select the Call Tree Type.

Analyzing Performance With The Profiler
Filtering and Saving the Data

Questa SV/AFV Tutorial, v6.4c 139

Figure 11-10. The Profile Report Dialog

c. In the Performance/Memory data section select Default (data collected).

d. Specify the Cutoff percent as 3%.

e. Select Write to file and type calltree.rpt in the file name field.

f. View file is selected by default when you select Write to file. Leave it selected.

g. Click OK.

The calltree.rpt report file will open automatically in Notepad (Figure 11-11).

Questa SV/AFV Tutorial, v6.4c140

Analyzing Performance With The Profiler
Filtering and Saving the Data

Figure 11-11. The calltree.rpt Report

You can also output this report from the command line using the profile report
command. See the QuestaSim Command Reference for details.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

Select Simulate > End Simulation. Click Yes.

Questa SV/AFV Tutorial, v6.4c 141

Chapter 12
Simulating With Code Coverage

Introduction

QuestaSim Code Coverage gives you graphical and report file feedback on which executable
statements, branches, conditions, and expressions in your source code have been executed. It
also measures bits of logic that have been toggled during execution.

Note
The functionality described in this lesson requires a coverage license feature in your
QuestaSim license file. Please contact your Mentor Graphics sales representative if you
currently do not have such a feature.

Design Files for this Lesson

The sample design for this lesson consists of a finite state machine which controls a behavioral
memory. The testbench test_sm provides stimulus.

The QuestaSim installation comes with Verilog and VHDL versions of this design. The files are
located in the following directories:

Verilog – <install_dir>/examples/tutorials/verilog/coverage

VHDL – <install_dir>/examples/tutorials/vhdl/coverage

This lesson uses the Verilog version in the examples. If you have a VHDL license, use the
VHDL version instead. When necessary, we distinguish between the Verilog and VHDL
versions of the design.

Related Reading

User’s Manual Chapter: Code Coverage.

Compile the Design

Enabling Code Coverage is a two step process. First, you identify which coverage statistics you
want and compile the design files. Second, you load the design and tell QuestaSim to produce
those statistics.

1. Create a new directory and copy the tutorial files into it.

Questa SV/AFV Tutorial, v6.4c142

Simulating With Code Coverage

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/questasim/examples/tutorials/verilog/coverage to the new directory.

If you have a VHDL license, copy the files in
<install_dir>/questasim/examples/tutorials/vhdl/coverage instead.

2. Start QuestaSim and change to the exercise directory.

If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a. Type vsim at a UNIX shell prompt or use the QuestaSim icon in Windows.

If the Welcome to QuestaSim dialog appears, click Close.

b. Select File > Change Directory and change to the directory you created in step 1.

3. Create the working library.

a. Type vlib work at the QuestaSim> prompt.

4. Compile the design files.

a. For Verilog – Type vlog -cover bcsxf sm.v sm_seq.v beh_sram.v test_sm.v at the
QuestaSim> prompt.

For VHDL – Type vcom -cover bcsxf sm.vhd sm_seq.vhd sm_sram.vhd
test_sm.vhd at the QuestaSim> prompt.

The -cover bcsxf argument instructs QuestaSim to collect branch, condition,
statement, extended toggle, and finite state machine coverage statistics. Refer to the
section Enabling Code Coverage in the User’s Manual for more information on the
available coverage types.

Load and Run the Design

1. Load the design.

a. Enter vsim -voptargs="+acc" -coverage test_sm at the QuestaSim> prompt of the
Transcript pane.

The -voptargs=”+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note
By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

2. Run the simulation

a. Type run 1 ms at the VSIM> prompt.

Simulating With Code Coverage

Questa SV/AFV Tutorial, v6.4c 143

When you load a design with Code Coverage enabled, QuestaSim adds several columns to the
Files and sim tabs in the Workspace (Figure 12-1). Your results may not match those shown in
the figure.

Figure 12-1. Code Coverage Columns in the Main Window Workspace

By default, QuestaSim also displays three Code Coverage panes in the Main window:

• Missed Coverage

Select View > Coverage > Missed Coverage to open or close this pane. Displays the
selected file’s un-executed statements, branches, conditions, expressions and signals
that have not toggled (Figure 12-2). It also includes missed states and transitions in
finite state machines.

Figure 12-2. Missed Coverage Pane

• Instance Coverage

Select View > Coverage > Instance Coverage to open or close this pane. Displays
statement, branch, condition, expression and toggle coverage statistics for each instance
in a flat, non-hierarchical view (Figure 12-3).

Questa SV/AFV Tutorial, v6.4c144

Simulating With Code Coverage

Figure 12-3. Instance Coverage Pane

• Details

Select View > Coverage > Details to open or close this pane. Shows coverage details
for the item selected in the Missed Coverage pane. Details can include truth tables for
conditions and expressions, or toggle details (Figure 12-4).

Figure 12-4. Details Pane

• Current Exclusions

Select View > Coverage > Current Exclusions to open or close this pane. Lists all files
and lines that are excluded from coverage statistics (Figure 12-5). See Excluding Lines
and Files from Coverage Statistics for more information.

Figure 12-5. Current Exclusions Pane

Simulating With Code Coverage
Coverage Statistics in the Main window

Questa SV/AFV Tutorial, v6.4c 145

All coverage panes can be re-sized, rearranged, and undocked to make the data more easily
viewable. To resize a pane, click-and-drag on the top or bottom border. To move a pane, click-
and-drag on the double-line to the right of the pane name. To undock a pane you can select it
then drag it out of the Main window, or you can click the Dock/Undock Pane button in the
header bar (top right). To redock the pane, click the Dock/Undock Pane button again.

We will look at these panes more closely in the next exercise. For complete details on each
pane, Refer to the section Code Coverage Panes in the User’s Manual.

Coverage Statistics in the Main window
Let’s take a look at the data in these various panes.

1. View statistics in the Workspace pane.

a. Select the sim tab in the Workspace and scroll to the right.

Coverage statistics are shown for each object in the design.

b. Select the Files tab in the Workspace and scroll to the right.

Each file in the design shows summary statistics for statements, branches,
conditions, expressions, and states.

c. Click the right-mouse button on any column name and select an object from the list
(Figure 12-6).

Figure 12-6. Right-click a Column Heading to Show Column List

Questa SV/AFV Tutorial, v6.4c146

Simulating With Code Coverage
Coverage Statistics in the Source Window

All checked columns are displayed. Unchecked columns are hidden. The status of
every column, whether displayed or hidden, is persistent between invocations of
QuestaSim.

2. View statistics in the Missed Coverage pane (see Figure 12-2 above).

a. Select different files from the Files tab of the Workspace. The Missed Coverage
pane updates to show statistics for the selected file.

b. Select any entry in the Statement tab to display that line in the Source window.

3. View statistics in the Details pane.

a. Select the Toggle tab in the Missed Coverage pane.

If the Toggle tab isn’t visible, you can do one of two things: 1) widen the pane by
clicking-and-dragging on the pane border; 2) if your mouse has a middle button,
click-and-drag the tabs with the middle mouse button.

b. Select any object in the Toggle tab to see details in the Details pane (see Figure 12-4
above).

4. View instance coverage statistics.

The Instance Coverage pane displays coverage statistics for each instance in a flat, non-
hierarchical view (see Figure 12-3 above). Select any instance in the Instance Coverage
pane to see its source code displayed in the Source window.

Coverage Statistics in the Source Window
In the previous section you saw that the Source window and the Main window coverage panes
are linked. You can select objects in the Main window panes to view the underlying source code
in the Source window. Furthermore, the Source window contains statistics of its own.

1. View coverage statistics for beh_sram in the Source window.

a. Select beh_sram.v in the Files tab of the Workspace.

In the Statement tab of the Missed Coverage pane, expand beh_sram.v if necessary
and select line 48.

b. The Source window opens in the MDI frame with line 48 highlighted momentarily
(Figure 12-7). Highlighting will disappear after a few seconds.

Simulating With Code Coverage
Coverage Statistics in the Source Window

Questa SV/AFV Tutorial, v6.4c 147

Figure 12-7. Coverage Statistics in the Source Window

c. Switch to the Source window.

The table below describes the various icons.

d. Select Tools > Code Coverage > Show coverage numbers.

The icons are replaced by execution counts on every line. An ellipsis (...) is
displayed whenever there are multiple statements on the line. Hover the mouse
pointer over a statement to see the count for that statement.

Table 12-1. Coverage Icons in the Source Window

Icon Description

green checkmark indicates a statement that has been executed

red X indicates that a statement in that line has not
been executed (zero hits)

green E indicates a line that has been excluded from
code coverage statistics

red XT or XF indicates that a true or false branch
(respectively) of a conditional statement has
not been executed

Questa SV/AFV Tutorial, v6.4c148

Simulating With Code Coverage
Toggle Statistics in the Objects Pane

Figure 12-8. Coverage Numbers Shown by Hovering the Mouse Pointer

e. Select Tools > Code Coverage > Show coverage numbers again to uncheck the
selection and return to icon display.

Toggle Statistics in the Objects Pane
Toggle coverage counts each time a logic node transitions from one state to another. Earlier in
the lesson you enabled six-state toggle coverage by using the -cover x argument with the vlog
or vcom command. Refer to the section Toggle Coverage in the User’s Manual for more
information.

1. View toggle data in the Objects pane of the Main window.

a. Select test_sm in the sim tab of the Workspace.

b. If the Objects pane isn’t open already, select View > Objects. Scroll to the right to
see the various toggle coverage columns, or undock and expand the pane until all
columns show (Figure 12-9).

Simulating With Code Coverage
Excluding Lines and Files from Coverage Statistics

Questa SV/AFV Tutorial, v6.4c 149

Figure 12-9. Toggle Coverage in the Objects Pane

Excluding Lines and Files from Coverage
Statistics

QuestaSim allows you to exclude lines and files from code coverage statistics. You can set
exclusions with the GUI, with a text file called an "exclusion filter file", or with "pragmas" in
your source code. Pragmas are statements that instruct QuestaSim to not collect statistics for the
bracketed code. Refer to the section Excluding Objects from Coverage in the User’s Manual for
more details on exclusion filter files and pragmas.

1. Display the Current Exclusions pane if necessary.

a. Select View > Coverage > Current Exclusions.

2. Exclude a line via the Missed Coverage pane.

a. Right click a line in the Missed Coverage pane and select Exclude Selection. (You
can also exclude the selection for the current instance only by selecting Exclude
Selection For Instance <inst_name>.) The line will appear in the Current Exclusions
pane.

3. Exclude an entire file.

a. In the Files tab of the Workspace, locate sm.v (or sm.vhd if you are using the VHDL
example).

b. Right-click the file name and select Code Coverage > Exclude Selected File
(Figure 12-10).

Questa SV/AFV Tutorial, v6.4c150

Simulating With Code Coverage
Creating Code Coverage Reports

Figure 12-10. Excluding a File Using Menus in the Workspace

The file is added to the Current Exclusions pane.

4. Cancel the exclusion of sm.v.

a. Right-click sm.v in the Current Exclusions pane and select Cancel Selected
Exclusions.

Creating Code Coverage Reports
You can create textual or HTML reports on coverage statistics using menu selections in the GUI
or by entering commands in the Transcript pane. You can also create a textual report of
coverage exclusions using menu selections.

To create textual coverage reports via the GUI, do one of the following:

• Select Tools > Coverage Report > Text from the Main window menubar.

• Right-click any object in the sim or Files tab of the Workspace and select Code
Coverage > Code Coverage Reports from the popup context menu.

• Right-click any object in the Instance Coverage pane and select Code coverage reports
from the popup context menu. You may also select Instance Coverage > Code
coverage reports from the Main window menu bar when the Instance Coverage pane is
active.

This will open the Coverage Text Report dialog (Figure 12-11) where you can elect to report
on:

o all files,

o all instances,

o all design units,

Simulating With Code Coverage
Creating Code Coverage Reports

Questa SV/AFV Tutorial, v6.4c 151

o specified design unit(s),

o specified instance(s), or

o specified source file(s).

QuestaSim creates a file (named report.txt by default) in the current directory and immediately
display the report in the Notepad text viewer/editor included with the product.

Figure 12-11. Coverage Text Report Dialog

To create a coverage report in HTML, select Tools > Coverage Report > HTML from the
Main window menu bar. This opens the Coverage HTML Report dialog where you can
designate an output directory path for the HTML report.

Questa SV/AFV Tutorial, v6.4c152

Simulating With Code Coverage
Creating Code Coverage Reports

Figure 12-12. Coverage HTML Report Dialog

By default, the coverage report command will produce textual files unless the -html argument is
used. You can display textual reports in the Notepad text viewer/editor included with the
product by using the notepad <filename> command.

To create a coverage exclusions report, select Tools > Coverage Report > Exclusions from the
Main window menubar. This opens the Coverage Exclusions Report dialog where you can elect
to show only pragma exclusions, only user defined exclusions, or both.

Figure 12-13. Coverage Exclusions Report Dialog

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Type quit -sim at the VSIM> prompt.

Questa SV/AFV Tutorial, v6.4c 153

Chapter 13
Debugging With PSL Assertions

Introduction

Using assertions in your HDL code increases visibility into your design and improves
verification productivity. QuestaSim supports Property Specification Language (PSL)
assertions for use in dynamic simulation verification. These assertions are simple statements of
design intent that declare design or interface assumptions.

This lesson will familiarize you with the use of PSL assertions in QuestaSim. You will run a
simulation with and without assertions enabled so you can see how much easier it is to debug
with assertions. After running the simulation with assertions, you will use the QuestaSim
debugging environment to locate a problem with the design.

Design Files for this Lesson

The sample design for this lesson uses a DRAM behavioral model and a self-checking
testbench. The DRAM controller interfaces between the system processor and the DRAM and
must be periodically refreshed in order to provide read, write, and refresh memory operations.
Refresh operations have priority over other operations, but a refresh will not preempt an in-
process operation.

The QuestaSim installation comes with Verilog and VHDL versions of this design. The files are
located in the following directories:

Verilog – <install_dir>/examples/psl/verilog/modeling/dram_controller

VHDL – <install_dir>/examples/psl/vhdl/modeling/dram_controller

This lesson uses the Verilog version for the exercises. If you have a VHDL license, use the
VHDL version instead.

You can embed assertions within your code or supply them in a separate file. This example
design uses an external file.

Related Reading

User’s Manual Chapter: Verification with Assertions and Cover Directives.

Compile the Example Design
In this exercise you will use a DO file to compile the design.

Questa SV/AFV Tutorial, v6.4c154

Debugging With PSL Assertions
Load and Run Without Assertions

1. Create a new directory and copy the lesson files into it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/examples/psl/verilog/modeling/dram_controller to the new directory.

If you have a VHDL license, copy the files in
<install_dir>/examples/psl/vhdl/modeling/dram_controller instead.

2. Start QuestaSim and change to the exercise directory you created.

If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a. To start QuestaSim, type vsim at a UNIX shell prompt or use the QuestaSim icon in
Windows.

If the Welcome to QuestaSim dialog appears, click Close.

b. Select File > Change Directory and change to the directory you created in step 1.

3. Execute the lesson DO file.

a. Type do compile.do at the command prompt.

The DO file does the following:

• Creates the working library

• Compiles the design files and assertions

Feel free to open the DO file and look at its contents.

Load and Run Without Assertions
1. Load the design without assertions.

a. Type vsim -voptargs="+acc" -nopsl tb at the command prompt.

The -voptargs=”+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note
By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

The -nopsl argument instructs the compiler to ignore PSL assertions.

2. Run the simulation.

a. Type run -all at the command prompt or click the Run -All icon.

Debugging With PSL Assertions
Using Assertions to Speed Debugging

Questa SV/AFV Tutorial, v6.4c 155

Verilog: The simulation reports an error at 267400 ns and stops on line 266 of the
dramcon_sim.v module.

VHDL: The simulation reports an error at 246800 ns and stops on line 135 of the
dramcon_sim.vhd entity.

The ERROR message indicates that the controller is not working because a value
read from memory does not match the expected value (Figure 13-1).

Figure 13-1. Transcript After Running Simulation Without Assertions

To debug the error, you might first examine the simulation waveforms and look for
all writes to the memory location. You might also check the data on the bus and the
actual memory contents at the location after each write. If that did not identify the
problem, you might then check all refresh cycles to determine if a refresh corrupted
the memory location.

Quite possibly, all of these debugging activities would be required, depending on
one’s skill (or luck) in determining the most likely cause of the error. Any way you
look at it, it is a tedious exercise.

3. End the simulation.

a. Type quit -sim at the command prompt to end this simulation.

Using Assertions to Speed Debugging
To see how assertions can speed debugging, reload the design with assertion failure tracking
enabled.

1. Reload the design.

a. Type vsim -voptargs="+acc" -assertdebug tb at the command prompt.

Questa SV/AFV Tutorial, v6.4c156

Debugging With PSL Assertions
Using Assertions to Speed Debugging

The ”+acc” portion of the -voptargs argument preserves PSL assertion data,
enabling pass count logging in the Transcript window and assertion viewing in the
Wave window. If you do not specify +acc, the tool only transcribes assertion failure
messages and reports only failure counts in the assertion browser.

+acc also enables the complete functionality of vsim -assertdebug. The
-assertdebug option gives you another tool for debugging failed assertions, as we’ll
see in a moment.

2. Execute the lesson DO file.

a. Type do sim.do at the command prompt.

The DO file does the following:

• Opens the Assertions tab of the Analysis pane and displays all assertions

• Opens a Source window

• Adds signals to the Wave window

You may need to resize and move the panes to better view the data.

3. Set all assertions to Break on Failures.

a. Select the Analysis pane to make it active.

b. Select Assertions > Configure from the main menu to open the Configure
assertions dialog (Figure 13-2).

Debugging With PSL Assertions
Using Assertions to Speed Debugging

Questa SV/AFV Tutorial, v6.4c 157

Figure 13-2. Change Assertions Dialog

c. In the Change on section, select All assertions.

d. In the Failures Assertions section, select Enable.

e. In the Failures Action section, select Break.

This causes the simulation to break (stop) on any failed assertion.

f. In the Passes Logging section, select On.

g. Click the OK button to accept your selections and close the dialog.

The command line equivalents for these actions are as follows:

assertion fail -action break -r *
assertion pass -log on -r *

Questa SV/AFV Tutorial, v6.4c158

Debugging With PSL Assertions
Using Assertions to Speed Debugging

4. Add assertion signals to the Wave window

a. Select all assertions in the Assertions tab of the Analysis pane.

b. Right-click on the selected assertions to open a popup menu.

c. Select Add Wave > Objects in Design.

Scroll to the bottom of the Wave window and you will see the assertion signals
(denoted by magenta triangles).

5. Run the simulation.

a. Type run -all at the command prompt.

Verilog: The Main window transcript shows that the assert_check_refresh assertion
in the dram_cntrl.psl file failed at 3100 ns. The simulation is stopped at that time.
Note that with no assertions, the testbench did not report a failure until 267,400 ns,
over 80x the simulation time required for a failure to be reported with assertions.

VHDL: The Main window transcript shows that the assert_check_refresh assertion
in the dram_cntrl.psl file failed at 3800 ns. The simulation is stopped at that time.
Note that with no assertions, the testbench did not report a failure until 246,800 ns,
over 60x the simulation time required for a failure to be reported with assertions.

The blue arrow in the Source window shows where the simulation stopped - at the
check_refresh assertion on line 24 of dram_cntrl.psl.

The Wave window displays a red triangle at the point of the simulation break and
shows "FAIL" in the values column of the assert_check_refresh assert directive
(Figure 13-3). Green triangles indicate assertion passes.

Figure 13-3. Assertion Failure Indicated in Wave Window

Debugging With PSL Assertions
Using Assertions to Speed Debugging

Questa SV/AFV Tutorial, v6.4c 159

The blue sections of the assert directive waveforms indicate inactive directives;
green indicates active directives.

6. View the assertion failure in the Assertion Debug pane of the Wave window.

Since you used the -assertdebug argument with the vsim command when you invoked
the simulator, you can view the details of assertion failures in the Assertion Debug pane
of the Wave window.

a. Undock the Wave window.

b. Select View > Assertion Debug. The Assertion Debug pane appears at the bottom
of the Wave window, as shown in Figure 13-4.

c. Click the red triangle on the assert_check_refresh directive waveform (the red
triangle indicates a failed assert directive).

Figure 13-4. The Assertion Debug Pane Shows Failed Assertion Details

Questa SV/AFV Tutorial, v6.4c160

Debugging With PSL Assertions
Debugging the Assertion Failure

The Signals of Interest column displays the signals responsible for the assertion
failure. You can analyze these signals further in the Dataflow window by right-
clicking an assertion directive’s waveform and selecting Show Drivers from the
popup menu.

7. View assertion failure in the Assertions tab of the Analysis pane.

The Assertions tab indicates a failure of assert_check_refresh in the Failure Count
column (Figure 13-5).

Figure 13-5. Assertion failure indicated in the Analysis pane

Debugging the Assertion Failure
1. View the source code of the failed assertion.

Verilog: The current line arrow points to the failed assertion on line 24 of the
dram_cntrl.psl file (Figure 13-6). This assertion consists of checking the check_refresh
property, which is defined on lines 20-22. The property states that when the refresh
signal is active, then it will wait until the memory controller state goes to IDLE. The
longest a read or write should take is 14 cycles. If the controller is already IDLE, then
the wait is 0 cycles. Once the controller is in IDLE state, then the refresh sequence
should start in the next cycle.

Debugging With PSL Assertions
Debugging the Assertion Failure

Questa SV/AFV Tutorial, v6.4c 161

Figure 13-6. Source Code for Failed Assertion

The refresh_sequence (second line of the property) is defined on line 18. The key part of
the refresh protocol is that we_n must be held high (write enable not active) for the
entire refresh cycle.

VHDL: The current line arrow points to the failed assertion on line 24 of the
dram_cntrl.psl file. The refresh_sequence (second line of the property) is defined on
line 20.

2. Check the Wave window to see if the write enable signal, we_n, was held high through
both REF1 and REF2 states.

a. In the Wave window, expand assert_check_refresh to reveal all signals referenced
by the assertion.

b. Zoom and scroll the Wave window so you can see we_n and mem_state
(Figure 13-7).

Questa SV/AFV Tutorial, v6.4c162

Debugging With PSL Assertions
Debugging the Assertion Failure

Figure 13-7. Examining we_n With Respect to mem_state

It is easy to see that we_n is high only during the REF1 state. It is low during REF2.

Let’s examine we_n further.

3. Examine we_n in the Dataflow and Source windows.

a. Open the Dataflow window by selecting View > Dataflow (Main window) then
select the Dataflow window to make it active.

b. Select Dataflow > Dataflow Preferences > Options from the menus to open the
Dataflow Options dialog. If the Dataflow window is undocked, select Tools >
Options from the Dataflow window menus.

c. Uncheck the Show Hierarchy selection as shown in Figure 13-8 and click OK.

Debugging With PSL Assertions
Debugging the Assertion Failure

Questa SV/AFV Tutorial, v6.4c 163

Figure 13-8. Dataflow Options Dialog

d. Drag we_n from the Wave window to the Dataflow window.

Verilog: The Dataflow window shows that we_n is driven by the #ASSIGN#104
process, with inputs rw and mem_state (Figure 13-9). The values shown in yellow
are the values for each signal at the point at which the simulation stopped: 3100 ns.
We see that we_n is St0 when mem_state is REF2. As noted above, we_n should be
St1. This is the reason for the assertion failure.

Figure 13-9. Viewing we_n in the Dataflow Window

VHDL: The Dataflow window shows that we_n is driven by the process at line 61,
which has inputs rw and mem_state. The values shown in yellow are the values for
each signal at the point at which the simulation stopped: 3800 ns. We see that we_n
is St0 when mem_state is REF2. As noted above, we_n should be St1. This is the
reason for the assertion failure.

e. Double-click the process that drives we_n in order to display its source code in the
Source window.

Questa SV/AFV Tutorial, v6.4c164

Debugging With PSL Assertions
Debugging the Assertion Failure

Verilog: Looking at the Source window you will see that the current line arrow
points to line 104 of the dramcon_rtl.sv file (Figure 13-10). In this line you can see
that the logic assigning we_n is wrong - it does not account for the REF2 state.

Figure 13-10. Finding the Bug in the Source Code

The code shows that the incorrect assignment is used for the example with the
correct assignment immediately below (lines 106-107) that will hold we_n high
through both states of the refresh cycle.

VHDL: Looking at the Source window you can see that the current line arrow points
to line 61 of the dramcon_rtl.vhd file. In this line you can see that the logic assigning
we_n is wrong - it does not account for the REF2 state.

The code shows that the incorrect assignment is used for the example with the
correct assignment immediately below (line 65) that will hold we_n high through
both states of the refresh cycle.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Select Simulate > End Simulation. Click Yes.

Questa SV/AFV Tutorial, v6.4c 165

Chapter 14
SystemVerilog Assertions and

Functional Coverage

Introduction

In this lesson you will:

• simulate the design with assertion failure tracking disabled in order to note how long the
simulation runs before an error is reached

• rerun the simulation with assertion failure tracking enabled in order to see how quickly
assertion failures can help you locate errors and speed debugging

• use cover directives and covergroups to cause testbench reactivity and enable functional
coverage capabilities

• create a functional coverage report using the graphic interface.

Design Files for this Lesson
This lesson uses an interleaver design with SystemVerilog assert and cover directives and
SystemVerilog covergroups to gain a basic understanding of how functional verification
information is gathered and displayed in QuestaSim.

The files for the interleaver design are located in
/<install_dir>/questasim/examples/tutorials/systemverilog/vlog_dut.

Understanding the Interleaver Design
An interleaver scrambles the byte order of incoming data in order to aid error detection and
correction schemes such as Reed Solomon/Viterbi. In the design used for this lesson, the
incoming data consists of a sync byte (0xb8, 0x47) followed by 203 bytes of packet data. The
203 bytes consist of 187 bytes of data to which a Reed Solomon encoder has previously
appended 16 bytes of data.

Figure 14-1. Incoming Data

Questa SV/AFV Tutorial, v6.4c166

SystemVerilog Assertions and Functional Coverage

The interleaver has 12 levels numbered 0 to 11. Each level, except the first, can be conceptually
thought of as a FIFO shift register. The depth of each register is 17 greater than the previous
level. The first level (level 0) has a depth of zero (0); level 1 has a depth of 17; level 2, a depth
of 34, and so on. Level 12 has a depth of 187. The sync byte of the packet is routed through
level 0. When a byte is loaded into each level’s FIFO shift register, the byte shifted out on the
corresponding level is output by the interleaver.

The FIFO shift registers are implemented using a single 2KX8 RAM instead of actual registers.
The RAM is divided into 11 different sections and each level has separate read and write
address registers. A state machine controls which level is being written to and read, and
determines which level’s address registers are selected to drive the actual RAM address inputs.

A common block called rdy_acpt is used to receive and drive the interleaver data in (di) and
data out (do) ports, respectively. The rdy_acpt block implements a simple handshake protocol.
When the device upstream from the interleaver drives data to it, the data is driven and the ready
signal (di_rdy) is asserted. The upstream block asserts the data along with its rdy signal and
must leave them asserted until the downstream block asserts its accept (di_acpt) signal. In other
words, the data isn't considered to have been transferred until both the rdy and acpt signals are
asserted on the rising edge of the clock. Both sides of the rdy_acpt block follow this handshake
protocol. The block diagram of the interleaver is shown in Figure 14-2.

Figure 14-2. Block Diagram of the Inteleaver

SystemVerilog Assertions and Functional Coverage

Questa SV/AFV Tutorial, v6.4c 167

The Testbench
Figure 14-3 shows how the testbench components are connected. The stimulus generator
creates random data packets and sends them to the driver. Even though the testbench is module
based, the stimulus generator still creates packets that are transaction based (SV class). This is
the big advantage offered by the QuestaSim Advanced Verification Methodology (AVM) - it
allows you to take advantage of transaction level modeling (TLM) techniques without having to
convert your test environment to a complete object oriented programming environment.

Figure 14-3. Block Diagram of the Testbench

The driver takes the TLM packets and converts them to pin-level signals. The driver also uses
randomization to vary the timing of the packets delivered to the device.

The monitors take the pin level activity of the DUT inputs and outputs and convert that activity
back to a transaction for use in the coverage collector and scoreboard.

The scoreboard contains a "golden" reference model of the interleaver that is then compared
against the actual output the device. There is also a feedback loop from the scoreboard to the
stimulus generator to tell the stimulus generator when testing is complete.

The coverage collector accumulates functional coverage information to help determine when
testing is complete. It measures things like how many different delay values were used in the
delivery of packets.

Questa SV/AFV Tutorial, v6.4c168

SystemVerilog Assertions and Functional Coverage
Run the Simulation without Assertions

Finally the responder (which is actually part of the driver in this testbench) provides the
handshaking ready/accept signals needed for packet delivery.

Related Reading
User’s Manual Chapter: Verification with Functional Coverage.

Run the Simulation without Assertions
1. Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons).

Copy the files from /<install_dir>/examples/tutorials/systemverilog/vlog_dut to the
new directory.

2. Start QuestaSim if necessary.

a. Type vsim at a UNIX shell prompt or use the QuestaSim icon in Windows.

Upon opening QuestaSim for the first time, you will see the Welcome to QuestaSim
dialog. Click Close.

b. Select File > Change Directory and change to the directory you created in step 1.

3. Run the simulation with a .do file.

a. Enter do assert.do at the QuestaSim> prompt.

The assert.do file will compile and load the design, run the simulation without
assertions, then pause while you examine simulation results. (In Windows, you may
see a “Finish Vsim” dialog that will ask, “Are you sure you want to finish?” Click
No.)

In a moment, you will enter a resume command to rerun the simulation with
assertions.

After the design loads, the first simulation runs until it reaches the $finish in the
top.sv module. At this point, a “Test Failed” message is displayed in the Transcript
pane as shown in Figure 14-4. The summary information shows that 22 packets were
correctly received by the scoreboard. This is a typical message from a self-checking
testbench.

SystemVerilog Assertions and Functional Coverage
Run the Simulation with Assertions

Questa SV/AFV Tutorial, v6.4c 169

Figure 14-4. First Simulation Stops at Error

At this point, you would normally generate waveforms for debugging the test
failure. But this information does not give a clear indication of the source of the
problem. Where do you start? This can be a very difficult problem to find unless you
have some debugging tools, such as assertions.

Run the Simulation with Assertions
1. Rerun the simulation with assertions.

a. Enter the resume command at the VSIM(paused)> prompt.

2. After the design loads, configure all assertions to “Break on Failure.”

a. The Assertions tab of the Analysis window should open. If it does not, select View >
Coverage > Assertions from the menus to open it.

Notice that the assertions are enabled for both Passes and Failures. This means that
both counts and visual indications in the Wave window will be maintained for
assertion Passes and Failures. It should be noted that this not the default behavior.
To get this behavior the simulation must be invoked with the vsim -assertdebug
switch, as we have done in this simulation. (This command is in the assert.do file)

b. Make sure none of the assertions are selected (Edit > Unselect All).

c. Click the header bar of the Analysis window (with the Assertions tab open) to make
it active. An “Assertions” menu selection will appear in the menu bar. (This assumes
the Analysis window is docked in the Main window.)

Questa SV/AFV Tutorial, v6.4c170

SystemVerilog Assertions and Functional Coverage
Run the Simulation with Assertions

d. Select Assertions > Configure. This will open the Configure Assertions dialog box
(Figure 14-5).

e. Select All assertions in the Change On section.

f. Select Enable failures.

g. Set the Failures Action to Break.

Figure 14-5. Enabling Assertion Failure Tracking and Action

h. Click OK to accept the changes and close the dialog.

The Failure column in the Assertions tab now shows assertion failure tracking
"enabled," and the Failure Action column shows "break" for all assertion failures
(Figure 14-6).

SystemVerilog Assertions and Functional Coverage
Debugging with Assertions

Questa SV/AFV Tutorial, v6.4c 171

Figure 14-6. Assertions Set to Break on Failure

The Transcript pane shows the command line equivalent of the actions you have just
performed:

assertion fail -action break -r *

3. Add all assertions to the Wave window

a. Select all assertions in the Assertions tab of the Analysis window and either drag and
drop them into the Wave window, or use the right mouse button to open a context
menu and select Add Wave > Selected Objects.

Figure 14-7. Assertions in Wave Window

Debugging with Assertions
Run the simulation and debug the assertion failure.

Questa SV/AFV Tutorial, v6.4c172

SystemVerilog Assertions and Functional Coverage
Debugging with Assertions

1. Run the simulation with assertion failure tracking enabled.

a. Enter run -all at the QuestaSim prompt.

b. When the simulator stops, enter run 0.

The run 0 command is needed to print any assertion messages when the assertion
failure action is set to Break. The reason this happens is due to scheduling. The
"break" must occur in the active event queue. However, assertion messages are
scheduled in the observed region. The observed region is later in the time step. The
run 0 command takes you to the end of the time step.

2. Verify the output of the Transcript pane (Figure 14-8).

Notice that the assertion failure message gives an indication of the failing expression.
This feature is enabled when the -assertdebug switch is used with the vsim command at
invocation. (This command is in the assert.do file.)

Figure 14-8. Assertion Failure Message in the Transcript

3. View the assertion failure in the Assertions tab of the Analysis pane.

The failed assertion is highlighted and ’1’ is displayed in the Failure Count column for
that assertion (Figure 14-9).

SystemVerilog Assertions and Functional Coverage
Debugging with Assertions

Questa SV/AFV Tutorial, v6.4c 173

Figure 14-9. Assertions Tab Shows Failure Count

4. Examine the fifo_shift_ram.v source code view. The fifo_shift_ram.v tab should be open,
as shown in (Figure 14-10).

The simulation breaks on line 44 of the fifo_shift_ram.v module because the assertion on
that line has failed. A blue arrow in the Source window points to the assertion.

Figure 14-10. Source Pane Pointer Shows Where Simulation Stopped

The parameterized property definition starts on line 29.

a. In the fifo_shift_ram.v source code view, scroll to the property definition that starts
on line 29.

Example 14-1. Assertion Property Definition

The property states that whenever we (push[10]) is asserted, in the same cycle:

• the ram address bus, addra should be equal to the write address bus for level 11
(waddr[11])

• and, waddr[11] should be within the range of 1536 to 1722.

Questa SV/AFV Tutorial, v6.4c174

SystemVerilog Assertions and Functional Coverage
Debugging with Assertions

In the next cycle:

• we should be de-asserted,

• and, the next value of waddr[11] should still be within the range 1536 to 1722.

5. Click the wave tab to view the assertion failure in the Wave window.

a. Scroll to the assert_ram_write_check_10 assertion.

The inverted red triangle indicates an assertion failure (Figure 14-11).

Figure 14-11. The Inverted Red Triangle Indicates an Assertion Failure

The green "midline" indicates where the assertion is active while the low blue line
indicates where the assertion is inactive. Blue squares indicate where assertion
threads start. Green triangles indicate assertion passes. Passes are only displayed
when the -assertdebug switch for the vsim command is used at invocation (see the
assert.do file).

b. Expand the assert_ram_write_check_10 assertion (click the + sign next to it) in the
wave window and zoom in.

c. Change the radix of addra and waddr to “Unsigned” by selecting both signals, right-
clicking the selected signals to open a popup menu, then selecting Radix >
Unsigned from the popup menu (Figure 14-12).

SystemVerilog Assertions and Functional Coverage
Debugging with Assertions

Questa SV/AFV Tutorial, v6.4c 175

Figure 14-12. Setting the Radix

As you can see in Figure 14-13, the value of waddr[11] has incremented to 1723
which is out of the allowable address range. Remember, in the Transcript message
for the assertion violation, the failing expression indicated that waddr[11] was out of
range.

6. Examine the waddr[11] signal in the Dataflow window.

a. Expand the waddr signal by clicking the + sign next to it, then scroll to the
waddr[11] signal (Figure 14-13).

Questa SV/AFV Tutorial, v6.4c176

SystemVerilog Assertions and Functional Coverage
Debugging with Assertions

Figure 14-13. Diagnosing Assertion Failure in the Wave Window

b. Double-click the waddr[11] waveform in the Wave window to open it in the
Dataflow window. The waddr[11] signal will be highlighted, as shown in
Figure 14-14, and the block shown is the ALWAYS procedure that created the
waddr signal.

SystemVerilog Assertions and Functional Coverage
Debugging with Assertions

Questa SV/AFV Tutorial, v6.4c 177

Figure 14-14. The wadder11 Signal in the Dataflow Window

c. Change the radix of /top/dut/fifo/waddr[11] in the Wave viewer portion of the
Dataflow window by right-clicking it and selecting Radix > Unsigned from the
popup menu. With the cursor at 241290 ns, as shown in Figure 14-14, we see that
the value of waddr[11] is 1723.

d. Select the symbol for the ALWAYS block in the Dataflow window. The
fifo_shift_ram.v source code view will open automatically, with a blue arrow
pointing to the code for the ALWAYS block (Figure 14-15).

Questa SV/AFV Tutorial, v6.4c178

SystemVerilog Assertions and Functional Coverage
Debugging with Assertions

Figure 14-15. Source Code for the ALWAYS Block

If you scroll down to the case covering waddr[11] you can see that the upper address
range for resetting waddr[11] has been incorrectly specified as 11’d1724
(Figure 14-16). This is the cause of the error.

Figure 14-16. Source Code for waddr[11]

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

Questa SV/AFV Tutorial, v6.4c 179

7. Quit the simulation.

a. Enter quit -sim at the QuestaSim prompt and close all tabs in the MDI Frame.

Exploring Functional Coverage
1. Load the interleaver once again.

a. Enter do fcov.do at the QuestaSim> prompt.

The interleaver uses a parameter (PKT_GEN_NUM), which is set to 80, to
determine the number of valid packets that will be interleaved. After the scoreboard
receives and verifies that 80 packets have been successfully interleaved it informs
the test controller, which halts both the stimulus generator and driver. During the
simulation, a coverage collector records several metrics for each packet sent to, and
output by, the interleaver. Figure 14-17 shows the source code of the up_cvg
covergroup.

Figure 14-17. Covergroup Code

The covergroup records the information stored in the upstream transaction captured
by the monitor. The transaction includes the byte wide values of the packet payload
data, the sync byte, and the individual data payload transfer times.

In order to have a bin created for each data value, option.auto_bin_max = 256 is
specified since the default number of auto bins created is defined by the

Questa SV/AFV Tutorial, v6.4c180

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

SystemVerilog LRM to be 64. The sync byte values are 71 and 184 which
correspond to 8'h47 and 8'hb8 respectively.

All other sync byte values are stored in the bin named illegal which should remain
empty. The packet payload data transfer delays times are recorded since the driver
randomly drives data to the interleaver. The packet payload data transfer delay bin
names are self descriptive and create a separate bin for each delay value except for
the vrylng (very long) bin which records any data transfer delay of 20 or more
cycles.

2. In the Covergroups tab of the Analysis window, expand the /top/dut hierarchy (click the
+ sign next to /top/dut) and you will find two additional covergroups –
sm_transitions_cvg and sm_cvg – which monitor the interleaver state machine.

Figure 14-18. Covergroup Bins

The sm_transitions_cvg covergroup records the valid state machine transitions while
sm_cvg records that the state machine correctly accepts incoming data and drives output
data in the proper states. Figure 14-19 shows the source code for the sm_cvg
covergroup.

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

Questa SV/AFV Tutorial, v6.4c 181

Figure 14-19. Covergroup sm_svg

The in_hs and out_hs signals are derived by ANDing in_acpt with in_rdy, and out_acpt
with out_rdy respectively. The state machine asserts in_acpt when idle, load_bypass, or
in any of the 10 load states, and asserts oup_rdy when in the send_bypass or any of 10
send states.

During proper operation, the in_hs signal should only assert if the state machine is idle,
load_bypass or in any of the other 10 load states. Likewise the out_hs should only assert
if the state machine is in send_bypass or any of the 10 send states. By crossing in_hs
with int_state and out_hs with int_state, this behavior can be verified. Figure 14-20
shows the sm_cvg covergroup with the int_state coverpoint expanded to show all bins.
Notice the bin values show the enumerated state names.

Questa SV/AFV Tutorial, v6.4c182

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

Figure 14-20. Bins for the sm_cvg Covergroup

3. Expand the hierarchy (click the + sign) of /top/dut/fifo and the ram_cvg covergroup.
Notice that the TYPE ram_cvg covergroup contains several instances – designated by
INST.

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

Questa SV/AFV Tutorial, v6.4c 183

a. View the source code for TYPE ram_cvg by right-clicking the covergroup name and
selecting View Source from the popup menu (Figure 14-21).

Figure 14-21. Viewing the Source Code for a Covergroup

The fifo_shift_ram.v source view will open to show the source code (Figure 14-22).

Figure 14-22. Source Code for ram_cvg Covergroup

Questa SV/AFV Tutorial, v6.4c184

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

Since the interleaver levels are implemented using a single RAM, with distinct RAM
address ranges for each level, the covergroup verifies that only valid address
locations are written and read.

Notice that there is only one covergroup but there are 11 covergroup instances that
are constructed with different values passed into the constructor (Figure 14-23).

Figure 14-23. Covergroup Instances for ram_cvg

Since the covergroup contains the option.per_instatnce = 1 statement
(Figure 14-22), the simulator creates a separate covergroup for each instance which
covers only the values passed to it in the constructor. The TYPE ram_cvg
covergroup is the union of all the values of each individual covergroup instance.

4. Open the Cover Directives tab and view the source code for the cover directive.

a. If the Cover Directives tab is not open in the Analysis window, select View >
Coverage > Cover Directives.

The Cover Directives tab contains a single cover directive (Figure 14-24).

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

Questa SV/AFV Tutorial, v6.4c 185

Figure 14-24. Cover Directive for the Interleaver Design

b. Right-click the cover directive and select View Source from the popup menu.
Figure 14-25 shows that this cover directive also tracks the interleaver state machine
transitions.

Figure 14-25. Source Code for the Cover Directive

SystemVerilog provides multiple ways to cover important items in a design. The
advantage of using a cover directive is that the QuestaSim Wave window provides
the ability to see when a directive is hit. While covergroups provide no temporal
aspect to determine the precise time an event is covered, covergroups are typically
much better at covering data values. Both of SystemVerilog's coverage capabilities
provide a powerful combination by using the cover directives temporal nature to
determine when to sample data oriented values in a covergroup.

5. Run the simulation and view functional coverage information.

a. Enter run -all at the command prompt in the Transcript window. The design runs
until at “TEST PASSED” message is reached. (In Windows, you may see a “Finish

Questa SV/AFV Tutorial, v6.4c186

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

Vsim” dialog that will ask, “Are you sure you want to finish?” Click No.) The
Transcript window will display scoreboard information (Figure 14-26).

Figure 14-26. Scoreboard Information in the Transcript

b. Expand the functional coverage information in the Covergroups tab of the Analysis
window as shown in Figure 14-27. While our overall covergroup coverage is almost
95% (as shown in the status bar at the bottom of the window), there is one short bin
in the up_delay covergroup that has no hits. Currently the driver inserts at least one
cycle between words when driving packet payload data.

Also, the sm_cvg shows releatively low (76.9%) coverage due to low coverage in the
in_hsXint_state and out_hsXint_state cross coverage bins. This is expected because
the in_hs signal only asserts in either the idle state, the load_bypass state, or one of
the 10 load states and the out_hs signal only asserts in the send_bypass or 10 other
send states. So while the indicated coverage for these cross bins might appear to
point to an area needing more testing, the absence of coverage is actually indicating
that proper behavior took place.

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

Questa SV/AFV Tutorial, v6.4c 187

Figure 14-27. Covergroup Coverage in the Analysis Window

If you expand the sm_transition_cvg covergroup you will see that shows 1461
interleaver state transitions (86 when starting from the idle loop, and 1375 when
starting from the bypass loop).

Questa SV/AFV Tutorial, v6.4c188

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

c. Open the Cover Directives tab.

The cover directive counts the same state transitions and, therefore, also indicates a
count of 1461 transitions (Figure 14-28).

Figure 14-28. Cover Directive Counts State Transitions

6. Add the cover directive to the Wave window twice.

a. Right-click the /top/dut/cover__s_interleave_sm cover directive and select Add
Wave > Selected Functional Coverage.

b. Repeat.

7. Change the Cover Directive View of the second directive displayed in the Wave
window from Temporal to Count Mode.

a. Right-click the second directive and select Cover Directive View > Count Mode
(Figure 14-29).

Figure 14-29. Changing the Cover Directive View to Count View

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

Questa SV/AFV Tutorial, v6.4c 189

Figure 14-30 and Figure 14-31 are two screen shots of the cover directive. In both
screen shots, the top view of the directive shows the temporal aspect of when the
thread went active while the bottom view shows the actual count value. When you
compare the two screen shots, which display different points in time, it is easy to see
the random nature of the drives. In Figure 14-30 there is 780 ns between the start and
end of the cover directive thread; in Figure 14-31 there is 920 ns.

Figure 14-30. First Temporal and Count Mode Views of Cover Directive

Figure 14-31. Second Temporal and Count Mode Views of Cover Directive

Questa SV/AFV Tutorial, v6.4c190

SystemVerilog Assertions and Functional Coverage
Creating Functional Coverage Reports

Creating Functional Coverage Reports
You can create functional coverage reports using dialogs accessible through the GUI or via
commands entered at the command line prompt.

1. Create a functional coverage report using the GUI.

a. Right-click in the Analysis pane and select Reports. This opens the Functional
coverage report dialog (Figure 14-32).

Figure 14-32. Functional Coverage Report Dialog

b. With "All coverage items" selected, select Covergroups only.

c. Select Include covergroup options.

d. Select OK to write the report to the file fcover_report.txt.

The actions taken in the GUI are echoed in the transcript as follows:

SystemVerilog Assertions and Functional Coverage
Creating Functional Coverage Reports

Questa SV/AFV Tutorial, v6.4c 191

fcover report -cvg -comments -option -file fcover_report.txt -r *

The report will appear automatically in QuestaSim Notepad as shown in
(Figure 14-33).

Figure 14-33. The Functional Coverage Report

You can also create textual, html, and exclusion coverage reports using the Tools > Coverage
Report menu selection.

Questa SV/AFV Tutorial, v6.4c192

SystemVerilog Assertions and Functional Coverage
Lesson Wrap-Up

Lesson Wrap-Up
This concludes this lesson.

1. Select File > Quit to close QuestaSim.

Questa SV/AFV Tutorial, v6.4c 193

Chapter 15
Using the SystemVerilog DPI

Introduction

This lesson is designed to walk you through the basics of using the SystemVerilog Direct
Programming Interface (DPI) with QuestaSim. After completing this lesson, you should have a
good understanding of the interface's intentions.

We will start with a small design that shows how simulation control flows back and forth across
the boundary between Verilog simulation and code written in a foreign language. In this tutorial
we will use code written in C, which is the foreign language most commonly used to interface
with Verilog simulations.

The design mimics a traffic intersection. We will bring up the design in QuestaSim and monitor
the waveform of a signal that represents a traffic light. We will run the simulation and watch
how the light changes color as we call functions written in both Verilog and C, freely moving
back and forth between the two languages.

This lesson is designed to work with the QuestaSim 6.1 release and newer.

Design Files for this Lesson

The QuestaSim installation comes with the design files you need, located in the following
directory:

<install_dir>/examples/tutorials/systemverilog/dpi_basic

Start by creating a new directory for this exercise (in case other users will be working with these
lessons) and copy all files from the above directory into it.

Related Reading

User’s Manual Appendix: Verilog Interfaces to C

User’s Manual Chapter: Verification with Functional Coverage

Examine the Source Files

Before getting started, take a look at the main design source files in order to get acquainted with
the simulation flow and some of the basic requirements for DPI.

1. Open the code for module test.sv in a text editor. It should look like the code in
Figure 15-1.

Questa SV/AFV Tutorial, v6.4c194

Using the SystemVerilog DPI

Figure 15-1. Source Code for Module test.sv

1 module test ();
2
3 typedef enum {RED, GREEN, YELLOW} traffic_signal;
4
5 traffic_signal light;
6
7 function void sv_GreenLight ();
8 begin
9 light = GREEN;
10 end
11 endfunction
12
13 function void sv_YellowLight ();
14 begin
15 light = YELLOW;
16 end
17 endfunction
18
19 function void sv_RedLight ();
20 begin
21 light = RED;
22 end
23 endfunction
24
25 task sv_WaitForRed ();
26 begin
27 #10;
28 end
29 endtask
30
31 export "DPI-C" function sv_YellowLight;
32 export "DPI-C" function sv_RedLight;
33 export "DPI-C" task sv_WaitForRed;
34
35 import "DPI-C" context task c_CarWaiting ();
36
37 initial
38 begin
39 #10 sv_GreenLight;
40 #10 c_CarWaiting;
41 #10 sv_GreenLight;
42 end
43
44 endmodule
45

Line 1 – We have just one top-level module called test in which all the simulation
activity will occur.

Line 3 – We declare a new data type called traffic_signal, which will contain the data
values RED, GREEN, and YELLOW.

Line 5 – We declare an object of this new traffic_signal type and give it the name light.

Using the SystemVerilog DPI

Questa SV/AFV Tutorial, v6.4c 195

Lines 7-11 – We define a Verilog function called sv_GreenLight which has no return
value. It simply sets the light to a value of GREEN. Note also that we give the function
name a prefix of sv_ in order to distinguish between tasks/functions defined in
SystemVerilog and functions defined in C.

Lines 13-17 – We define another function called sv_YellowLight, which changes the
light to YELLOW.

Lines 19-23 – We define another function called sv_RedLight, which changes the light
to RED.

Lines 25-29 – The Verilog task sv_WaitForRed simply delays for 10 time units (ns by
default). Why do we define a task rather than a function? This will become apparent as
we go through the actual simulation steps coming up.

Lines 31-33 – These lines do not look like typical Verilog code. They start with the
keyword "export", followed by some additional information. These statements are
export declarations – the basic mechanism for informing the Verilog compiler that
something needs to be handled in a special way. In the case of DPI, special handling
means that the specified task or function will be made visible to a foreign language and
that its name must be placed in a special name space.

The syntax for these declarations is defined in the SystemVerilog LRM. There is a
simple rule to remember regarding how they work:

When running a SystemVerilog simulation and using DPI in order to utilize foreign
(C) code, the Verilog code should be thought of as the center of the universe (i.e.
everything revolves around the Verilog code). When you wish to make something in
Verilog visible to the foreign world, you need to export it to that world. Similarly, if
there is something from that foreign world that you want your Verilog code to see
and have access to, you need to import it to Verilog.

So in these lines, we export two of the functions and the task that we've just defined to
the foreign world (sv_YellowLight, sv_RedLight, and sv_WaitForRed). But why don’t
we export the sv_GreenLight function? You’ll see in a moment.

Line 35 – The import declaration is used to import code from the foreign (C) world into
the Verilog world. The additional information needed with an import declaration
includes:

• how you want this foreign code to be seen by Verilog (i.e. should it be
considered a task or a function), and

• the name of the task or function.

In this case, we will import a task named c_CarWaiting from the C world (note the c_
prefix so that we can keep track of where these tasks/functions originated). This is an
important concept to remember. If you try to call a foreign task/function but forget to
include an import declaration for it, you will get an error when you load simulation
stating that you have an unresolved reference to that task/function.

Questa SV/AFV Tutorial, v6.4c196

Using the SystemVerilog DPI

Lines 37-42 – We use a little initial block that executes the simulation and walks us
through the light changing scenario. The light starts out RED by default, since that is the
first (left-most) value in the light's type definition (i.e. the traffic_signal type). When
simulation starts, we wait for 10 time units and then change the light to GREEN via the
sv_GreenLight function. All this occurs in the Verilog world, so there is no need to
export the sv_GreenLight function. We won't be doing anything with it over in the
foreign world.

Next, we wait for 10 time units again and then do something called c_CarWaiting. From
our previous discussion of the import declaration, we know this is a C function that will
be imported as a Verilog task. So when we call this task, we are actually stepping over
into the foreign world and should be examining some C code. In fact, let's take a look at
the other source file for this lesson to see what happens when this line executes during
simulation.

2. Open the foreign.c source file in a text editor. It should look like the code in Figure 15-2.

Figure 15-2. Source Code for the foreign.c File - DPI Lab

1 int c_CarWaiting()
2 {
3 printf("There’s a car waiting on the other side. \n");
4 printf("Initiate change sequence ...\n");
5 sv_YellowLight();
6 sv_WaitForRed();
7 sv_RedLight();
8 return 0;
9 }
10

Line 1 – This is the function definition for c_CarWaiting. It is an int type function and
returns a 0.

Lines 3-4 – The statement inside the function prints out a message indicating that a car
is waiting on the other side of the intersection and that we should initiate a light change
sequence.

Line 5 – We call the SystemVerilog function sv_YellowLight. Even though we are in the
foreign (C) world now, executing C functions/statements until this function exits and
returns control back over to Verilog, we can indeed call the Verilog world and execute
tasks/functions from there. The reason the C code knows that sv_YellowLight exists is
because we've exported it back in our Verilog code with the export declaration.

To follow along with the simulation, look at the sv_YellowLight function in lines 13
through 17 in the test.sv file (Figure 15-3). Here, we change the light to a value of
YELLOW, then pass control back to foreign.c and go to the line following the
sv_YellowLight function call.

Figure 15-3. The sv_YellowLight Function in the test.sv File

Using the SystemVerilog DPI

Questa SV/AFV Tutorial, v6.4c 197

13 function void sv_YellowLight ();
14 begin
15 light = YELLOW;
16 end
17 endfunction

Line 6 – Now we call the sv_WaitForRed SystemVerilog task, defined on lines 25-29 of
test.sv (Figure 15-4).

Figure 15-4. The sv_WaitForRed Task in the test.sv File

25 task sv_WaitForRed ();
26 begin
27 #10;
28 end
29 endtask

The task designates a wait for 10 time units. Since there is time delay associated with
this procedure, it has to be a task. All the rules associated with tasks and functions in
basic Verilog will also apply if you call them from the foreign world. Since we compile
the two source files independently (one with a Verilog compiler and one with a C
compiler), the rules of one language will not be known to the compiler for the other. We
will not find out about issues like this in many cases until we simulate and hook
everything together. Be aware of this when deciding how to import/export things.

An important thing to note here is that we made this call to the SystemVerilog
sv_WaitForRed() task from the foreign (C) world. If we want to consume simulation
time, C doesn't know anything about the SystemVerilog design or simulation time units.
So we would need to make calls back over to Verilog in order to perform such
operations. Again, just remember which world you are in as you move around in
simulation.

Anyway, sv_WaitForRed just burns 10 time units of simulation and then returns control
back over to C. So we go back over to foreign.c and proceed to the next line.

Line 7 – Here we call the sv_RedLight SystemVerilog function, which changes the light
to RED. If you look up that function in test.sv, that is exactly what occurs (Figure 15-5).

Figure 15-5. The sv_RedLight Function in the test.sv File

19 function void sv_RedLight ();
20 begin
21 light = RED;
22 end
23 endfunction

This is the last statement in the c_CarWaiting function in foreign.c. So now this function
exits and returns control back over to Verilog.

The simulator returns to line 40 in test.sv, which called this C function in the first place.
There is nothing else to be done on this line. So we drop down to the next line of

Questa SV/AFV Tutorial, v6.4c198

Using the SystemVerilog DPI

execution in the simulation. We wait for 10 time units and then call the sv_GreenLight
function (Figure 15-6). If you recall, this function just keeps execution in the Verilog
world and changes the light back to GREEN. Then we're all done with simulation.

Figure 15-6. Function Calls in the test.sv File

37 initial
38 begin
39 #10 sv_GreenLight;
40 #10 c_CarWaiting;
41 #10 sv_GreenLight;
42 end

Compile and Load the Simulation

Create a new directory and copy into it all files from:
<install_dir>/questasim/examples/tutorials/systemverilog/dpi_basic

Change directory to this new directory and make sure your QuestaSim environment is set up
properly.

UNIX and Linux: Use the make utility to compile and load the design into the simulator.

Windows: Double-click the windows.bat file.

Note
For Windows users, if you do not have the gcc-3.3.1-mingw32 compiler installed,
download it from SupportNet (http://supportnet.mentor.com/) and unzip it into the
QuestaSim install tree. In addition, make sure it is in your Path environment variable.

Explore the Makefile

A Makefile has been included with this lesson to help UNIX and Linux users compile and
simulate the design (Figure 15-7), or you can run "make all" to kick off the whole thing all at
once. There is also a clean target to help you clean up the directory should you want to start over
and run again.

Figure 15-7. Makefile for Compiling and Running on UNIX or Linux Platforms

1 worklib:
2 vlib work
3
4 compile: test.sv
5 vlog test.sv -dpiheader dpi_types.h
6
7 foreign: foreign.c

Using the SystemVerilog DPI

Questa SV/AFV Tutorial, v6.4c 199

8 gcc -I$(MTI_HOME)/include -shared -g -o foreign.so foreign.c
9
10 optimize:
11 vopt +acc test -o opt_test
12
13 foreign_windows: foreign.c
14 vsim -c opt_test -dpiexportobj exports
15 gcc -I$(MTI_HOME)/include -shared -g -o foreign.dll foreign.c
exports.obj -lmtipli -L$(MTI_HOME)/win32
16
17 sim:
18 vsim opt_test -sv_lib foreign
19
20 all:
21 worklib compile foreign optimize sim
22
23 all_windows:
24 worklib compile optimize foreign_windows sim
25
26 clean:
27 rm -rf work transcript vsim.wlf foreign.so foreign.dll exports.obj
28

The five targets in the Makefile are:

Line 1 – The vlib command creates the work library where everything will be compiled
to.

Lines 4-5 – The vlog command invokes the vlog compiler on the test.sv source file.

Lines 7-8 – The gcc command invokes the gcc C compiler on the foreign.c source file
and creates a shared object (foreign.so) that will be loaded during simulation. Note that
this command assumes that you have the MTI_HOME environment variable set to the
QuestaSim installation directory.

Lines 10-11 – The vopt command initiates optimization of the design. The +acc option
provides full visibility into the design for debugging purposes. The -o option is required
for naming the optimized design object (in this case, opt_test).

Lines 16-17 – The vsim command invokes the simulator using the opt_test optimized
design object. The -sv_lib option specifies the shared object to be loaded during
simulation. Without this option, the simulator will not be able to find any imported (C)
functions you've defined.

Explore the windows.bat File

A windows.bat file has been included for Windows users (Figure 15-8).

Figure 15-8. The windows.bat File for Compiling and Running in Windows - DPI
Lab

Questa SV/AFV Tutorial, v6.4c200

Using the SystemVerilog DPI

1 vlib work
2
3 vlog test.sv -dpiheader dpi_types.h
4
5 vopt +acc test -o opt_test
6
7 vsim -c test -dpiexportobj exports
8
9 gcc -I %MTI_HOME%\include -shared -g -o foreign.dll foreign.c
exports.obj -lmtipli -L %MTI_HOME%\win32
10
11 vsim -i opt_test test -sv_lib foreign -do "add wave light; view source"
12

The windows.bat file compiles and runs the simulation as follows:

Line 1 – The vlib command creates the work library where everything will be compiled
to.

Line 3 – The vlog command invokes the vlog compiler on the test.sv source file.

Line 5 – The vopt command initiates optimization of the design. The +acc option
provides full visibility into the design for debugging purposes. The -o option is required
for naming the optimized design object (in this case, opt_test).

Line 7 – The first vsim command creates an object called exports which is used by the
gcc command.

Line 9 – The gcc command compiles and links together the foreign.c source file and the
exports.obj file created with the previous command. The -o option creates an output
library called foreign.dll.

Note
This command assumes that you have the MTI_HOME environment variable set to the
QuestaSim installation directory.

Line 11 – The second vsim command invokes the simulator using the opt_test
optimized design object. The -sv_lib option tells the simulator to look in the foreign.dll
library for C design objects that can be used in the SystemVerilog simulation. The -do
"add wave light; view source" option adds the light signal to the Wave window and
opens the Source window for viewing.

Run the Simulation

Once in simulation, you can step through the code or simply run the simulation in 10 ns
increments to observe changes in the light signal’s waveform. If you look in the Objects pane in
the QuestaSim graphic interface (Figure 15-9), you should see the "light" object with its initial
value of RED. If the Objects window is not open, select View > Objects from the Main menus
to open it.

Using the SystemVerilog DPI

Questa SV/AFV Tutorial, v6.4c 201

Figure 15-9. The light Signal in the Objects Pane

UNIX and Linux: Drag and drop that object into a Wave window.

Windows: The light object has already been placed in the Wave window.

1. Run the simulation for 10 ns.

a. Enter run 10 ns at the command line. You’ll see light turn “GREEN” in the Objects
and Wave windows.

b. Repeat several times and watch the Wave window as it changes values at the
appropriate simulation times (Figure 15-10).

Figure 15-10. The light Signal in the Wave Window

2. Restart the simulation.

a. Click the Restart icon.

b. In the Restart dialog, click the Restart button.

3. Run the simulation for 10 ns.

a. Enter run 10 ns at the command line.

4. View the test.sv code in the Source window.

a. Select the test.sv tab.

Questa SV/AFV Tutorial, v6.4c202

Using the SystemVerilog DPI

5. Step through the code.

a. Click the Step icon and watch the blue arrow in the Source window move
through the code for test.sv (Figure 15-11) and foreign.c. This allows you to keep
track of where you are in the source files as you step through the simulation. Feel
free to experiment and try adding your own functions, tasks, statements, etc.

Figure 15-11. Source Code for test.sv

Lesson Wrap-Up

This concludes this lesson on the basics of how DPI works in QuestaSim. You should feel
comfortable with these elements before moving on to the next tutorial. This design only
accomplishes some simple function calls to change the values of the signal light in order to
stress how easy it is to step back and forth between Verilog and a foreign language like C.
However, we have not done anything terribly interesting in regard to passing data from one
language to the other. Is this possible? Most definitely. In fact, the next lesson will address this
subject.

1. Select Simulate > End Simulation. Click Yes.

Questa SV/AFV Tutorial, v6.4c 203

Chapter 16
Using SystemVerilog DPI for Data Passing

Introduction

This lesson is designed to build on your understanding of the Direct Programming Interface
(DPI) for SystemVerilog. In the previous lesson, you were shown the basic elements of the
interface and how to make simple function calls to/from Verilog and C. However, no data was
passed across the boundary, which is a very important topic to understand. This lesson will
focus on that aspect of the interface.

Although DPI allows Verilog to interface with any foreign language, we will concentrate on the
C language in this lesson.

Mapping Verilog and C
Whenever we want to send the value of an object from Verilog to C, or vice versa, that value
will have a dual personality. It may have been initialized as a bit or a reg over in the Verilog
world, for example, and then passed over to C via an imported function call. The C world,
however, does not have regs, bits, logic vectors, etc. How is this going to work?

What you need in this situation is a table that maps Verilog types to C types. Fortunately, much
of the type definition that went into Verilog-2001 and SystemVerilog was done with the
intention of matching C data types, so much of this mapping is pretty straightforward. However,
some of the mapping is a little more complex and you will need to be aware of how an object in
Verilog will map to its C counterpart.

Do you have to define this mapping? No. The SystemVerilog language defines it for you, and
the simulator is set up to handle all of these dual personality issues itself. For example, in
Verilog, an int is a 2-state, signed integer that is stored in 32 bits of memory (on the system; it's
not an array or a vector). The fact that a Verilog int is a 2-state type is important in that it only
allows 0 and 1 values to be assigned to its bits. In other words, no X or Z values are allowed
(they are just converted to 0 if you try to assign them).

This is straightforward and it appears to behave just like a C int would, so the mapping is easy:
a Verilog int will map to a C int as it crosses the boundary.

Design Files for This Lesson

The design files for this lesson are located in the following directory:

<install_dir>/examples/tutorials/systemverilog/data_passing

Questa SV/AFV Tutorial, v6.4c204

Using SystemVerilog DPI for Data Passing

Start by creating a new directory for this exercise (in case other users will be working with these
lessons) and copy all files from the above directory into it.

Related Reading

User’s Manual Appendix: Verilog Interfaces to C

User’s Manual Chapter: Verification with Functional Coverage

Examine the Source Files

Before getting started, let’s look at the foreign.c file which contains the definitions for the two C
functions we’ll be using to read our data values coming over from the Verilog world and print
messages to let us know what is going on.

1. Open the code for the foreign.c file in a text editor. It should look like the code in
Figure 16-1.

Figure 16-1. Source Code for the foreign.c File - Data Passing Lab

1 #include "dpi_types.h"
2
3 void print_int(int int_in)
4 {
5 printf("Just received a value of %d.\n", int_in);
6 }
7
8 void print_logic(svLogic logic_in)
9 {

10 switch (logic_in)
11 {
12 case sv_0: printf ("Just received a value of logic 0.\n");
13 break;
14 case sv_1: printf ("Just received a value of logic 1.\n");
15 break;
16 case sv_z: printf ("Just received a value of logic Z.\n");
17 break;
18 case sv_x: printf ("Just received a value of logic X.\n");
19 break;
20 }
21 }
22

Line 1 – We include a header file called dpi_types.h which will help us with type
conversions – more to come on that a bit later.

Line 3 – This is the definition for a function called print_int, which simply takes an
integer argument and prints its values.

Line 8 – This is the definition for a function called print_logic which takes an argument
of type svLogic and then checks to see what value it is and prints a message accordingly.

Using SystemVerilog DPI for Data Passing

Questa SV/AFV Tutorial, v6.4c 205

2. Now let’s look at the SystemVerilog source code. Open the test.sv source file in a text
editor. It should look like the code in Figure 16-2.

Figure 16-2. Source Code for the test.sv Module

1 module test ();
2
3 import "DPI-C" context function void print_int (input int int_in);
4 import "DPI-C" context function void print_logic (input logic logic_in);
5
6 int int_var;
7 bit bit_var;
8 logic logic_var;
9

10 initial
11 begin
12 print_int(int_var);
13 int_var = 1
14 print_int(int_var);
15 int_var = -12;
16 print_int(int_var);
17 print_int(bit_var);
18 bit_var = 1’b1;
19 print_int(bit_var);
20 bit_var = 1’bx;
21 print_int(bit_var);
22 logic_var = 1'b1;
23 print_int(logic_var);
24 logic_var = 1'bx;
25 print_int(logic_var);
26 print_logic(logic_var);
27 logic_var = 1'bz;
28 print_logic(logic_var);
29 logic_var = 1'b0;
30 print_logic(logic_var);
31 end
32
33 endmodule
34

Lines 3-4 – These lines don’t look like typical Verilog code. They start with the import
keyword and are followed by additional information. These statements are referred to as
import declarations. An import declaration is a mechanism used to inform the Verilog
compiler that something needs to be handled in a special way. In the case of DPI, the
special handling means that the specified task or function will be made visible to
SystemVerilog from a foreign language and that its name will need to be placed in a
special name space.

The syntax for these declarations is defined in the SystemVerilog LRM. There is a
simple rule to remember regarding how they work: When running a SystemVerilog
simulation, and using DPI in order to utilize foreign (C) code, the Verilog code should
be thought of as the center of the universe (i.e. everything revolves around the Verilog
code).

If there is something from that foreign world that you want your Verilog code to see and
have access to, you need to "import" it to Verilog. Similarly, when you wish to make

Questa SV/AFV Tutorial, v6.4c206

Using SystemVerilog DPI for Data Passing

something in Verilog visible to the foreign world, you need to "export" it to that world
(see the previous lesson). So in these lines, we import the two functions that we've just
defined over in the foreign world (print_int & print_logic).

Lines 6-8 – Here, we declare three variables that will be used as arguments in the two
functions. Note how they are defined as three different SystemVerilog types: int, bit, and
logic.

Lines 10-31 – This initial block simply calls each function and sets values for each
variable in a sequence that will be discussed when we run the design.

Compile and Load the Simulation

Create a new directory and copy into it all files from:
<install_dir>/questasim/examples/tutorials/systemverilog/data_passing
Change directory to this new directory and make sure your QuestaSim environment is set up
properly.

UNIX and Linux: Use the make utility to compile and load the design into the simulator.

Windows: Double-click the windows.bat file.

Note
For Windows users, if you do not have the gcc-3.3.1-mingw32 compiler installed,
download it from SupportNet (http://supportnet.mentor.com/) and unzip it into the
QuestaSim install tree. In addition, make sure it is in your Path environment variable.

Explore the Makefile

A Makefile has been included with this lesson to help UNIX and Linux users compile and
simulate the design (Figure 16-3), or you can run "make all" to kick off the whole thing all at
once. There is also a clean target to help you clean up the directory should you want to start over
and run again.

Figure 16-3. Makefile for Compiling and Running on UNIX and Linux Platforms

Using SystemVerilog DPI for Data Passing

Questa SV/AFV Tutorial, v6.4c 207

1 worklib:
2 vlib work
3
4 compile: test.sv
5 vlog test.sv -dpiheader dpi_types.h
6
7 foreign: foreign.c
8 gcc -I$(MTI_HOME)/include -shared -g -o foreign.so foreign.c
9

10 optimize:
11 vopt +acc test -o opt_test
12
13 sim:
14 vsim opt_test test -sv_lib foreign
15
16 all:
17 worklib compile foreign optimize sim
18
19 clean:
20 rm -rf work transcript vsim.wlf foreign.so dpi_types.h
21

The five targets in the Makefile are:

Line 1 – worklib: The vlib command creates the work library where everything will be
compiled to.

Lines 4-5 – compile: The vlog command invokes the vlog compiler on the test.sv
source file.

Lines 7-8 – foreign: The gcc command invokes the gcc C compiler on the foreign.c
source file and creates a shared object (foreign.so) that will be loaded during simulation.
Note that this command assumes that you have the MTI_HOME environment variable
set to the QuestaSim installation directory.

Lines 10-11 – optimize: The vopt command initiates optimization of the design. The
+acc option provides full visibility into the design for debugging purposes. The -o
option is required for naming the optimized design object (in this case, opt_test).

Lines 13-14 – sim: The vsim command invokes the simulator using the optimized
design object opt_test. The -sv_lib option specifies the shared object to be loaded during
simulation. Without this option, the simulator will not be able to find any imported (C)
functions you've defined.

Explore the windows.bat File

A windows.bat file has been included for Windows users (Figure 16-4).

Figure 16-4. The windows.bat File for Compiling and Running in Windows -
Data Passing Lab

Questa SV/AFV Tutorial, v6.4c208

Using SystemVerilog DPI for Data Passing

1 vlib work
2
3 vlog test.sv -dpiheader dpi_types.h
4
5 vopt +acc test -o opt_test
6
7 gcc -I %MTI_HOME%\include -shared -g -o foreign.dll foreign.c -lmtipli -L

%MTI_HOME%\win32
8
9 vsim -i opt_test -sv_lib foreign -do "view source"

10

The windows.bat file compiles and runs the simulation as follows:

Line 1 – The vlib command creates the work library where everything will be compiled
to.

Line 3 – The vlog command invokes the vlog compiler on the test.sv source file.

Line 5 – The vopt command initiates optimization of the design. The +acc option
provides full visibility into the design for debugging purposes. The -o option is required
for naming the optimized design object (in this case, opt_test).

Line 7– The gcc command compiles the foreign.c source file. The -I option is used to
specify a directory to search for include files. The -shared option tells gcc to create a
shared library as the output (i.e. compile AND link). The -g option adds debugging code
to the output. The -o option creates an output library called foreign.dll. The -lmtipli
option is used to specify a compiled library that is to be included when trying to resolve
all the functions used in the C/C++ code being compiled. The -L option specifies a
directory to search for libraries specified in the -l option.

Note
The gcc command assumes that you have the MTI_HOME environment variable set to
the QuestaSim installation directory.

Line 9– The vsim command invokes the simulator using the opt_test optimized design
object. The -sv_lib option tells the simulator to look in the foreign.dll library for C
design objects that can be used in the SystemVerilog simulation. The -do "view
source" option opens the Source window and displays the test.sv source code.

Run the Simulation

Once in simulation with the test.sv module loaded, you can use the Step Over command
button to advance through the simulation. This will simply set values of different types of
Verilog objects and send the data over to C for print out to the screen.

1. (For UNIX and Linux) Right-click the test instance in the Workspace window and select
View Declaration from the popup menu that appears. This will open a Source window
and display the test.sv source code.

Using SystemVerilog DPI for Data Passing

Questa SV/AFV Tutorial, v6.4c 209

2. Click the Step Over button. With this first step you should be on line #12 in test.sv
(indicated by the blue arrow in the Source window - see Figure 16-5) where we print out
the value of int_var – which is defined as an int on line #6.

Figure 16-5. Line 12 of test.sv in the Source Window

Nothing has been assigned to int_var yet, so it should have its default initial value of 0.
If you look in the Objects window, you should see that int_var is indeed equal to 0
(Figure 16-6).

Figure 16-6. The Value of int_var is Currently 0

3. Click the Step Over button again. This will call the imported C function print_int with
int_var as its input parameter. If you look in the Transcript window after this line
executes, you should see the following message:

Just received a value of 0.

That's what we expect to happen. So far, so good.

4. Next we set int_var to a value of 1. Click the Step Over button and you will see the value
of int_var change to 1 in the Objects window.

5. Now do another Step Over and you should see a 1 being printed in the Transcript
window this time (Figure 16-7).

Questa SV/AFV Tutorial, v6.4c210

Using SystemVerilog DPI for Data Passing

Figure 16-7. The Value of int_var Printed to the Transcript Window

6. With the next two steps (click Step Over twice), we change int_var to -12 and print
again. You should get the idea now. Both positive and negative integers are getting set
and printed properly.

Next we are going to use the print_int function to print the value of bit_var, which is
defined as a bit type on line #7. It also has a default initial value of 0, so you can guess
what will be printed out.

7. Click Step Over again and verify the results in the Objects window (Figure 16-8) and in
the Transcript window (Figure 16-9).

Figure 16-8. The Value of bit_var is 0.

Figure 16-9. Transcript Shows the Value Returned for bit_var

8. Click Step Over twice to set bit_var to a 1 and print to the transcript.

9. Click Step Over to set bit_var to X.

Look in the Objects window. The variable didn't go to X. It went to 0. Why?

Remember that the bit type is a 2-state type. If you try to assign an X or a Z, it gets
converted to 0. So we get a 0 instead, and that's what should get printed.

10. Click Step Over for the print_int function and verify that a value of 0 is printed.

Now let's try some 4-state values. You should be on line #22 now where logic_var is a
4-state "logic" type being assigned a 1.

Using SystemVerilog DPI for Data Passing

Questa SV/AFV Tutorial, v6.4c 211

11. Click Step Over to go to line #23. You should see the value of logic_var change from X
to 1 in the Objects window.

12. Click Step Over to call print_int again and print the value of logic_var to the transcript.

13. Click Step Over to set logic_var to X.

14. Click Step Over to print logic_var. You should be on line #26 now. Look at the
transcript and you will see that a value of 0 is printed instead of X. Why? Let’s look into
the source code to see what happened.

Look at the foreign.c file in Figure 16-1, which is the C source for our imported
functions. In line 3, the print_int function is expecting an integer (int) as its input. That
works fine when we were sending integers. But now we are working with 4-state data
types, which allow X and Z values. How is that kind of data going to cross over the
boundary, and what is it going to look like when it gets over to C? What about user
defined types and the many other types of data we can send back and forth? How are
you supposed to know how to write your C functions to accept that kind of data properly
and/or send it back to Verilog properly?

Fortunately, the answer to all these questions is that you don't really have to know the
fine details. The SystemVerilog language defines this data mapping for you.
Furthermore, QuestaSim will create a C header file for you during compilation that you
can reference in your C code. All the function prototypes, data type definitions, and
other important pieces of information are made available to you via this header file.

If you look at the compile target in the Makefile (Figure 16-3) you will see an option in
the vlog command called -dpiheader with an output file name as its argument. As vlog
compiles your Verilog source file, it analyzes any DPI import/export statements and
creates a C header file with what it knows to be the correct way to define the prototypes
for your imported/exported functions/tasks. In this lesson, we call the file dpi_types.h
(Figure 16-10).

Figure 16-10. The dpi_types.h File

Questa SV/AFV Tutorial, v6.4c212

Using SystemVerilog DPI for Data Passing

1 /* MTI_DPI */
2
3 /*
4 * Copyright 2004 Mentor Graphics Corporation.
5 *
6 * Note:
7 * This file is automatically generated.
8 * Please do not edit this file - you will lose your edits.
9 *
10 * Settings when this file was generated:
11 * PLATFORM = 'win32'
12 * Info = SE 6.1c 2005.11
13 */
14 #ifndef INCLUDED_DPI_TYPES
15 #define INCLUDED_DPI_TYPES
16
17 #ifdef __cplusplus
18 extern "C" {
19 #endif
20
21 #include "svdpi.h"
22
23 DPI_DLLESPEC
24 void
25 print_int(
26 int int_in);
27
28 DPI_DLLESPEC
29 void
30 print_logic(
31 svLogic logic_in);
32
33 #ifdef __cplusplus
34 } /* extern "C" */
35 #endif
36
37 #endif /* INCLUDED */
38

At the top of this file is information for internal DPI purposes. But if you go down to line
25, you'll see a function prototype for the print_int function. As expected, the input
parameter is an int type.

Just below this function is the prototype for the print_logic function, which has an input
parameter of type "svLogic" (i.e. SystemVerilog Logic). This file includes another
header file called svdpi.h, which is part of the SystemVerilog language and is shipped in
the QuestaSim installation directory (that's why we have "-I$(MTI_HOME)/include" on
the command line for C compilation in the Makefile's "foreign" target – see
Figure 16-3). This svLogic type is basically an unsigned char.

When you put #include dpi_types.h in your C source file, all these function prototypes
and data types will be made available to you. In fact, we strongly recommend that you
use this file when writing the C code that will interface with Verilog via DPI.

Look back at the test.sv file (Figure 16-2) and look for the DPI import statements. There
is one for print_int and one for print_logic. The vlog compiler looks at these statements,
sees the names of the functions being imported along with their parameters and return
values (in Verilog terms), and then creates the correct DPI header file for you. In the
case of the print_logic function, it saw that the input parameter was of type "logic". So it

Using SystemVerilog DPI for Data Passing

Questa SV/AFV Tutorial, v6.4c 213

put logic's counterpart of "svLogic" in the header file. Now both elements of the dual
personality for this particular object are defined and everything should pass over to C
properly.

Let's go back to simulation. We should be on line #26, just after the point where the bad
logic value of 0 got printed instead of an X. Now that we know we were using the wrong
function for this particular type of data, we will use the print_logic function instead.

15. Click Step Over to execute this line. The X value is printed out this time (Figure 16-11).
You can take a look at the foreign.c file to see how this was accomplished.

Figure 16-11. The Transcript Shows the Correct Value of logic X

Basically, 4-state values are represented as 0, 1, 2, and 3 in their canonical form. The
values you see in the switch statement inside the print_logic function are #define'd in the
svdpi.h file for you so that you can keep everything straight. Again, if you use the DPI
header file in your C code, you can just use this stuff and everything will work properly.

Go ahead and step through a few more statements and you can see that logic_var gets set
to some other 4-state values and we print them correctly using the print_logic function.

Lesson Wrap-Up

There is certainly much more involved with passing data back and forth across the boundary
between C and Verilog using DPI. What about user-defined types? What about arrays? Structs?
64-bit integers? This particular subject can get into some pretty hefty detail, and we've already
covered quite a bit here. Hopefully, this lesson has helped you understand the most basics of
passing data through the interface. Most important of all, it should give you an understanding of
how to make use of the DPI header file that vlog creates in order to make sure your C code is
written properly to interface with SystemVerilog.

1. Select Simulate > End Simulation. Click Yes.

Questa SV/AFV Tutorial, v6.4c214

Using SystemVerilog DPI for Data Passing

Questa SV/AFV Tutorial, v6.4c 215

Chapter 17
Comparing Waveforms

Introduction

Waveform Compare computes timing differences between test signals and reference signals.
The general procedure for comparing waveforms has four main steps:

1. Select the simulations or datasets to compare

2. Specify the signals or regions to compare

3. Run the comparison

4. View the comparison results

In this exercise you will run and save a simulation, edit one of the source files, run the
simulation again, and finally compare the two runs.

Note
The functionality described in this tutorial requires a compare license feature in your
QuestaSim license file. Please contact your Mentor Graphics sales representative if you
currently do not have such a feature.

Design Files for this Lesson

The sample design for this lesson consists of a finite state machine which controls a behavioral
memory. The testbench test_sm provides stimulus.

The QuestaSim installation comes with Verilog and VHDL versions of this design. The files are
located in the following directories:

Verilog – <install_dir>/examples/tutorials/verilog/compare

VHDL – <install_dir>/examples/tutorials/vhdl/compare

This lesson uses the Verilog version in the examples. If you have a VHDL license, use the
VHDL version instead. When necessary, instructions distinguish between the Verilog and
VHDL versions of the design.

Related Reading

User’s Manual sections: Waveform Compare and Recording Simulation Results With Datasets.

Questa SV/AFV Tutorial, v6.4c216

Comparing Waveforms
Creating the Reference Dataset

Creating the Reference Dataset
The reference dataset is the .wlf file that the test dataset will be compared against. It can be a
saved dataset, the current simulation dataset, or any part of the current simulation dataset.

In this exercise you will use a DO file to create the reference dataset.

1. Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/questasim/examples/tutorials/verilog/compare to the new directory.

If you have a VHDL license, copy the files in
<install_dir>/questasim/examples/tutorials/vhdl/compare instead.

2. Start QuestaSim and change to the exercise directory.

If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a. Type vsim at a UNIX shell prompt or use the QuestaSim icon in Windows.

If the Welcome to QuestaSim dialog appears, click Close.

b. Select File > Change Directory and change to the directory you created in step 1.

3. Execute the lesson DO file.

a. Type do gold_sim.do at the QuestaSim> prompt.

The DO file does the following:

• Creates and maps the work library

• Compiles the Verilog and VHDL files

• Loads the simulator with optimizations turned off (vsim -novopt)

• Runs the simulation and saves the results to a dataset named gold.wlf

• Quits the simulation

Feel free to open the DO file and look at its contents.

Creating the Test Dataset
The test dataset is the .wlf file that will be compared against the reference dataset. Like the
reference dataset, the test dataset can be a saved dataset, the current simulation dataset, or any
part of the current simulation dataset.

Comparing Waveforms
Creating the Test Dataset

Questa SV/AFV Tutorial, v6.4c 217

To simplify matters, you will create the test dataset from the simulation you just ran. However,
you will edit the testbench to create differences between the two runs.

Verilog

1. Edit the testbench.

a. Select File > Open and open test_sm.v.

b. Scroll to line 122, which looks like this:

@ (posedge clk) wt_wd('h10,'haa);

c. Change the data pattern ’aa’ to ’ab’:

@ (posedge clk) wt_wd('h10,'hab);

d. Select File > Save to save the file.

2. Compile the revised file and rerun the simulation.

a. Type do sec_sim.do at the QuestaSim> prompt.

The DO file does the following:

• Re-compiles the testbench

• Adds waves to the Wave window

• Loads the simulator with optimizations turned off (vsim -novopt)

• Runs the simulation

VHDL

1. Edit the testbench.

a. Select File > Open and open test_sm.vhd.

b. Scroll to line 151, which looks like this:

wt_wd (16#10#, 16#aa#, clk, into);

c. Change the data pattern ’aa’ to ’ab’:

wt_wd (16#10#, 16#ab#, clk, into);

d. Select File > Save to save the file.

2. Compile the revised file and rerun the simulation.

a. Type do sec_sim.do at the QuestaSim> prompt.

The DO file does the following:

• Re-compiles the testbench

Questa SV/AFV Tutorial, v6.4c218

Comparing Waveforms
Comparing the Simulation Runs

• Adds waves to the Wave window

• Loads the simulator with optimizations turned off (vsim -novopt)

• Runs the simulation

Comparing the Simulation Runs
QuestaSim includes a Comparison Wizard that walks you through the process. You can also
configure the comparison manually with menu or command line commands.

1. Create a comparison using the Comparison Wizard.

a. Select Tools > Waveform Compare > Comparison Wizard.

b. Click the Browse button and select gold.wlf as the reference dataset (Figure 17-1).
Recall that gold.wlf is from the first simulation run.

Figure 17-1. First dialog of the Waveform Comparison Wizard

c. Leaving the test dataset set to Use Current Simulation, click Next.

d. Select Compare All Signals in the second dialog (Figure 17-2) and click Next.

Figure 17-2. Second dialog of the Waveform Comparison Wizard

Comparing Waveforms
Viewing Comparison Data

Questa SV/AFV Tutorial, v6.4c 219

e. In the next three dialogs, click Next, Compute Differences Now, and Finish,
respectively.

QuestaSim performs the comparison and displays the compared signals in the Wave
window.

Viewing Comparison Data
Comparison data is displayed in the Workspace, Transcript, Objects, Wave and List window
panes. Compare objects are denoted by a yellow triangle.

The Compare tab in the Workspace pane shows the region that was compared;

The Transcript pane shows the number of differences found between the reference and test
datasets;

The Objects pane shows comparison differences when you select the comparison object in the
Compare tab of the Workspace (Figure 17-3).

Figure 17-3. Comparison information in the Workspace and Objects panes

Comparison Data in the Wave Window
The Wave window displays comparison information as follows:

• timing differences are denoted by a red X’s in the pathnames column (Figure 17-4),

Questa SV/AFV Tutorial, v6.4c220

Comparing Waveforms
Viewing Comparison Data

Figure 17-4. Comparison objects in the Wave window

• red areas in the waveform view show the location of the timing differences,

• red lines in the scrollbars also show the location of timing differences,

• and, annotated differences are highlighted in blue.

The Wave window includes six compare icons that let you quickly jump between differences
(Figure 17-5).

Figure 17-5. The compare icons

From left to right, the icons do the following: find first difference, find previous annotated
difference, find previous difference, find next difference, find next annotated difference, find
last difference. Use these icons to move the selected cursor.

The compare icons cycle through differences on all signals. To view differences in only a
selected signal, use <tab> and <shift> - <tab>.

Comparison Data in the List Window
You can also view the results of your waveform comparison in the List window.

1. Add comparison data to the List window.

Comparing Waveforms
Saving and Reloading Comparison Data

Questa SV/AFV Tutorial, v6.4c 221

a. Select View > List from the Main window menu bar.

b. Drag the test_sm comparison object from the compare tab of the Main window to the
List window.

c. Scroll down the window.

Differences are noted with yellow highlighting (Figure 17-6). Differences that have
been annotated have red highlighting.

Figure 17-6. Compare differences in the List window

Saving and Reloading Comparison Data
You can save comparison data for later viewing, either in a text file or in files that can be
reloaded into QuestaSim.

To save comparison data so it can be reloaded into QuestaSim, you must save two files. First,
you save the computed differences to one file; next, you save the comparison configuration
rules to a separate file. When you reload the data, you must have the reference dataset open.

1. Save the comparison data to a text file.

a. In the Main window, select Tools > Waveform Compare > Differences > Write
Report.

Questa SV/AFV Tutorial, v6.4c222

Comparing Waveforms
Saving and Reloading Comparison Data

b. Click Save.

This saves compare.txt to the current directory.

c. Type notepad compare.txt at the VSIM> prompt to display the report
(Figure 17-7).

Figure 17-7. Coverage data saved to a text file

d. Close Notepad when you have finished viewing the report.

2. Save the comparison data in files that can be reloaded into QuestaSim.

a. Select Tools > Waveform Compare > Differences > Save.

b. Click Save.

This saves compare.dif to the current directory.

c. Select Tools > Waveform Compare > Rules > Save.

d. Click Save.

This saves compare.rul to the current directory.

Comparing Waveforms
Saving and Reloading Comparison Data

Questa SV/AFV Tutorial, v6.4c 223

e. Select Tools > Waveform Compare > End Comparison.

3. Reload the comparison data.

a. With the sim tab of the Workspace active, select File > Open.

b. Change the Files of Type to Log Files (*.wlf) (Figure 17-8).

Figure 17-8. Displaying Log Files in the Open dialog

c. Double-click gold.wlf to open the dataset.

d. Select Tools > Waveform Compare > Reload.

Since you saved the data using default file names, the dialog should already have the
correct Waveform Rules and Waveform Difference files specified (Figure 17-9).

Figure 17-9. Reloading saved comparison data

e. Click OK.

The comparison reloads. You can drag the comparison object to the Wave or List
window to view the differences again.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation and close
the gold.wlf dataset.

1. Type quit -sim at the VSIM> prompt.

2. Type dataset close gold at the QuestaSim> prompt.

Questa SV/AFV Tutorial, v6.4c224

Comparing Waveforms
Saving and Reloading Comparison Data

Questa SV/AFV Tutorial, v6.4c 225

Chapter 18
Automating Simulation

Introduction

Aside from executing a couple of pre-existing DO files, the previous lessons focused on using
QuestaSim in interactive mode: executing single commands, one after another, via the GUI
menus or Main window command line. In situations where you have repetitive tasks to
complete, you can increase your productivity with DO files.

DO files are scripts that allow you to execute many commands at once. The scripts can be as
simple as a series of QuestaSim commands with associated arguments, or they can be full-
blown Tcl programs with variables, conditional execution, and so forth. You can execute DO
files from within the GUI or you can run them from the system command prompt without ever
invoking the GUI.

Note
This lesson assumes that you have added the <install_dir>/questasim/<platform>
directory to your PATH. If you did not, you will need to specify full paths to the tools
(i.e., vlib, vmap, vlog, vcom, and vsim) that are used in the lesson.

Related Reading

User’s Manual Chapter: Tcl and Macros (DO Files).

Practical Programming in Tcl and Tk, Brent B. Welch, Copyright 1997

Creating a Simple DO File
Creating DO files is as simple as typing the commands in a text file. Alternatively, you can save
the Main window transcript as a DO file. In this exercise, you will use the commands you enter
in the Main window transcript to create a DO file that adds signals to the Wave window,
provides stimulus to those signals, and then advances the simulation.

1. Load the test_counter design unit.

a. If necessary, start QuestaSim.

b. Change to the directory you created in the "Basic Simulation" lesson.

c. Enter vsim -voptargs="+acc" test_counter to load the design unit.

Questa SV/AFV Tutorial, v6.4c226

Automating Simulation
Running in Command-Line Mode

2. Enter commands to add signals to the Wave window, force signals, and run the
simulation.

a. Select File > New > Source > Do to create a new DO file.

b. Enter the following commands into the source window:

add wave count
add wave clk
add wave reset
force -freeze clk 0 0, 1 {50 ns} -r 100
force reset 1
run 100
force reset 0
run 300
force reset 1
run 400
force reset 0
run 200

3. Save the file.

a. Select File > Save As.

b. Type sim.do in the File name: field and save it to the current directory.

4. Load the simulation again and use the DO file.

a. Enter quit -sim at the VSIM> prompt.

b. Enter vsim -voptargs="+acc" test_counter at the QuestaSim> prompt.

The -voptargs=”+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note
By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

c. Enter do sim.do at the VSIM> prompt.

QuestaSim executes the saved commands and draws the waves in the Wave window.

5. When you are done with this exercise, select File > Quit to quit QuestaSim.

Running in Command-Line Mode
We use the term "command-line mode" to refer to simulations that are run from a DOS/ UNIX
prompt without invoking the GUI. Several QuestaSim commands (e.g., vsim, vlib, vlog, etc.)
are actually stand-alone executables that can be invoked at the system command prompt.
Additionally, you can create a DO file that contains other QuestaSim commands and specify
that file when you invoke the simulator.

Automating Simulation
Running in Command-Line Mode

Questa SV/AFV Tutorial, v6.4c 227

1. Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise. Create the directory and copy the
following files into it:

• /<install_dir>/examples/tutorials/verilog/automation/counter.v

• /<install_dir>/examples/tutorials/verilog/automation/stim.do

This lesson uses the Verilog file counter.v. If you have a VHDL license, use the
counter.vhd and stim.do files in the /<install_dir>/examples/tutorials/vhdl/automation
directory instead.

2. Create a new design library and compile the source file.

Again, enter these commands at a DOS/ UNIX prompt in the new directory you created
in step 1.

a. Type vlib work at the DOS/ UNIX prompt.

b. For Verilog, type vlog counter.v at the DOS/ UNIX prompt. For VHDL, type vcom
counter.vhd.

3. Create a DO file.

a. Open a text editor.

b. Type the following lines into a new file:

list all signals in decimal format
add list -decimal *

read in stimulus
do stim.do

output results
write list counter.lst

quit the simulation
quit -f

c. Save the file with the name sim.do and place it in the current directory.

4. Run the batch-mode simulation.

a. Type vsim -voptargs="+acc"-c -do sim.do counter -wlf counter.wlf at the DOS/
UNIX prompt.

The -c argument instructs QuestaSim not to invoke the GUI. The -wlf argument
saves the simulation results in a WLF file. This allows you to view the simulation
results in the GUI for debugging purposes.

5. View the list output.

Questa SV/AFV Tutorial, v6.4c228

Automating Simulation
Running in Command-Line Mode

a. Open counter.lst and view the simulation results. Output produced by the Verilog
version of the design should look like the following:

ns /counter/count
 delta /counter/clk
 /counter/reset
 0 +0 x z *
 1 +0 0 z *
 50 +0 0 * *
 100 +0 0 0 *
 100 +1 0 0 0
 150 +0 0 * 0
 151 +0 1 * 0
 200 +0 1 0 0
 250 +0 1 * 0

.

.

.
The output may appear slightly different if you used the VHDL version.

6. View the results in the GUI.

Since you saved the simulation results in counter.wlf, you can view them in the GUI by
invoking VSIM with the -view argument.

Note
Make sure your PATH environment variable is set with the current version of QuestaSim
at the front of the string.

a. Type vsim -view counter.wlf at the DOS/ UNIX prompt.

The GUI opens and a dataset tab named "counter" is displayed in the Workspace
(Figure 18-1).

Figure 18-1. A Dataset in the Main Window Workspace

b. Right-click the counter instance and select Add > To Wave > All items in region.

The waveforms display in the Wave window.

7. When you finish viewing the results, select File > Quit to close QuestaSim.

Automating Simulation
Using Tcl with the Simulator

Questa SV/AFV Tutorial, v6.4c 229

Using Tcl with the Simulator
The DO files used in previous exercises contained only QuestaSim commands. However, DO
files are really just Tcl scripts. This means you can include a whole variety of Tcl constructs
such as procedures, conditional operators, math and trig functions, regular expressions, and so
forth.

In this exercise, you create a simple Tcl script that tests for certain values on a signal and then
adds bookmarks that zoom the Wave window when that value exists. Bookmarks allow you to
save a particular zoom range and scroll position in the Wave window. The Tcl script also
creates buttons in the Main window that call these bookmarks.

1. Create the script.

a. In a text editor, open a new file and enter the following lines:

proc add_wave_zoom {stime num} {
echo "Bookmarking wave $num"
bookmark add wave "bk$num" "[expr $stime - 50] [expr $stime +
100]" 0
add button "$num" [list bookmark goto wave bk$num]
}
These commands do the following:

• Create a new procedure called "add_wave_zoom" that has two arguments, stime
and num.

• Create a bookmark with a zoom range from the current simulation time minus 50
time units to the current simulation time plus 100 time units.

• Add a button to the Main window that calls the bookmark.

b. Now add these lines to the bottom of the script:

add wave -r /*
when {clk'event and clk="1"} {
 echo "Count is [exa count]"
 if {[examine count]== "00100111"} {
 add_wave_zoom $now 1
 } elseif {[examine count]== "01000111"} {
 add_wave_zoom $now 2
 }
}
These commands do the following:

• Add all signals to the Wave window.

• Use a when statement to identify when clk transitions to 1.

• Examine the value of count at those transitions and add a bookmark if it is a
certain value.

c. Save the script with the name "add_bkmrk.do."

Questa SV/AFV Tutorial, v6.4c230

Automating Simulation
Using Tcl with the Simulator

Save it into the directory you created in Basic Simulation.

2. Load the test_counter design unit.

a. Start QuestaSim.

b. Select File > Change Directory and change to the directory you saved the DO file
to in step 1c above.

c. Enter the following command at the QuestaSim> prompt:

vsim -voptargs="+acc" test_counter

3. Execute the DO file and run the design.

a. Type do add_bkmrk.do at the VSIM> prompt.

b. Type run 1500 ns at the VSIM> prompt.

The simulation runs and the DO file creates two bookmarks.

It also creates buttons (labeled "1" and "2") on the Main window toolbar that jump to
the bookmarks (Figure 18-2).

Figure 18-2. Buttons Added to the Main Window Toolbar

c. Click the buttons and watch the Wave window zoom on and scroll to the time when
count is the value specified in the DO file.

Lesson Wrap-Up

This concludes this lesson.

1. Select File > Quit to close QuestaSim.

Automating Simulation
Using Tcl with the Simulator

Questa SV/AFV Tutorial, v6.4c 231

Questa SV/AFV Tutorial, v6.4c232

Automating Simulation
Using Tcl with the Simulator

233

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

Questa SV/AFV Tutorial, v6.4c

— A —
aCC, 66
add dataflow command, 112
add wave command, 83
Assertions

add to dataflow, 162
debugging failures, 160
ignore assertions during simulation, 154
-nopsl argument to vsim, 154
speeding debugging, 155

— B —
break icon, 32
breakpoints

in SystemC modules, 75
setting, 32
stepping, 35

— C —
C Debug, 75
Code Coverage

excluding lines and files, 149
reports, 150
Source window, 146

command-line mode, 226
compile order, changing, 44
compiling your design, 20, 27
-cover argument, 142
coverage report command, 152
cursors, Wave window, 84, 97

— D —
Dataflow window

displaying hierarchy, 112
expanding to drivers/readers, 104
options, 112
tracing events, 106
tracing unknowns, 110

dataset close command, 223
design library

working type, 21

design optimization, 19
documentation, 15
drivers, expanding to, 104

— E —
external libraries, linking to, 58

— F —
folders, in projects, 47
format, saving for Wave window, 87

— G —
gcc, 66

— H —
hierarchy, displaying in Dataflow window, 112

— L —
libraries

design library types, 21
linking to external libraries, 58
mapping to permanently, 62
resource libraries, 21
working libraries, 21
working, creating, 26

linking to external libraries, 58

— M —
manuals, 15
mapping libraries permanently, 62
memories

changing values, 127
initializing, 123

memory contents, saving to a file, 121

— N —
notepad command, 222

— O —
optimization, 19
options, simulation, 50

Index

234 Questa SV/AFV Tutorial, v6.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

— P —
Performance Analyzer

filtering data, 137
physical connectivity, 104
Profiler

profile details, 136
viewing profile details, 136

projects
adding items to, 42
creating, 41
flow overview, 20
organizing with folders, 47
simulation configurations, 50

— Q —
quit command, 59

— R —
radix command, 116
reference dataset, Waveform Compare, 216
reference signals, 215
run -all, 32
run command, 31

— S —
saving simulation options, 50
simulation

basic flow overview, 19
restarting, 33
running, 30

simulation configurations, 50
stepping after a breakpoint, 35
SystemC

setting up the environment, 66
supported platforms, 66
viewing in the GUI, 74

— T —
Tcl, using in the simulator, 229
test dataset, Waveform Compare, 216
test signals, 215
time, measuring in Wave window, 84, 97
toggle statistics, Signals window, 148
tracing events, 106
tracing unknowns, 110

— U —
unknowns, tracing, 110

— V —
vcom command, 116
vlib command, 116
vlog command, 116
vsim command, 26

— W —
Wave window

adding items to, 82, 90
cursors, 84, 97
measuring time with cursors, 84, 97
saving format, 87
zooming, 84, 93

Waveform Compare
reference signals, 215
saving and reloading, 221
test signals, 215

working library, creating, 20, 26

— X —
X values, tracing, 110

— Z —
zooming, Wave window, 84, 93

End-User License Agreement
The latest version of the End-User License Agreement is available on-line at:

www.mentor.com/terms_conditions/enduser.cfm

END-USER LICENSE AGREEMENT (“Agreement”)

This is a legal agreement concerning the use of Software between you, the end user, as an authorized
representative of the company acquiring the license, and Mentor Graphics Corporation and Mentor Graphics
(Ireland) Limited acting directly or through their subsidiaries (collectively “Mentor Graphics”). Except for license
agreements related to the subject matter of this license agreement which are physically signed by you and an
authorized representative of Mentor Graphics, this Agreement and the applicable quotation contain the parties'
entire understanding relating to the subject matter and supersede all prior or contemporaneous agreements. If you
do not agree to these terms and conditions, promptly return or, if received electronically, certify destruction of
Software and all accompanying items within five days after receipt of Software and receive a full refund of any
license fee paid.

1. GRANT OF LICENSE. The software programs, including any updates, modifications, revisions, copies, documentation
and design data (“Software”), are copyrighted, trade secret and confidential information of Mentor Graphics or its
licensors who maintain exclusive title to all Software and retain all rights not expressly granted by this Agreement.
Mentor Graphics grants to you, subject to payment of appropriate license fees, a nontransferable, nonexclusive license to
use Software solely: (a) in machine-readable, object-code form; (b) for your internal business purposes; (c) for the license
term; and (d) on the computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half
mile (800 meter) radius. Mentor Graphics’ standard policies and programs, which vary depending on Software, license
fees paid or services purchased, apply to the following: (a) relocation of Software; (b) use of Software, which may be
limited, for example, to execution of a single session by a single user on the authorized hardware or for a restricted period
of time (such limitations may be technically implemented through the use of authorization codes or similar devices); and
(c) support services provided, including eligibility to receive telephone support, updates, modifications, and revisions.

2. EMBEDDED SOFTWARE. If you purchased a license to use embedded software development (“ESD”) Software, if
applicable, Mentor Graphics grants to you a nontransferable, nonexclusive license to reproduce and distribute executable
files created using ESD compilers, including the ESD run-time libraries distributed with ESD C and C++ compiler
Software that are linked into a composite program as an integral part of your compiled computer program, provided that
you distribute these files only in conjunction with your compiled computer program. Mentor Graphics does NOT grant
you any right to duplicate, incorporate or embed copies of Mentor Graphics' real-time operating systems or other
embedded software products into your products or applications without first signing or otherwise agreeing to a separate
agreement with Mentor Graphics for such purpose.

3. BETA CODE. Software may contain code for experimental testing and evaluation (“Beta Code”), which may not be used
without Mentor Graphics’ explicit authorization. Upon Mentor Graphics’ authorization, Mentor Graphics grants to you a
temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta Code without charge
for a limited period of time specified by Mentor Graphics. This grant and your use of the Beta Code shall not be construed
as marketing or offering to sell a license to the Beta Code, which Mentor Graphics may choose not to release
commercially in any form. If Mentor Graphics authorizes you to use the Beta Code, you agree to evaluate and test the
Beta Code under normal conditions as directed by Mentor Graphics. You will contact Mentor Graphics periodically
during your use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of your
evaluation and testing, you will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths,
weaknesses and recommended improvements. You agree that any written evaluations and all inventions, product
improvements, modifications or developments that Mentor Graphics conceived or made during or subsequent to this
Agreement, including those based partly or wholly on your feedback, will be the exclusive property of Mentor Graphics.
Mentor Graphics will have exclusive rights, title and interest in all such property. The provisions of this section 3 shall
survive the termination or expiration of this Agreement.

 IMPORTANT INFORMATION

USE OF THIS SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS
LICENSE AGREEMENT BEFORE USING THE SOFTWARE. USE OF SOFTWARE INDICATES YOUR
COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH

IN THIS AGREEMENT. ANY ADDITIONAL OR DIFFERENT PURCHASE ORDER TERMS AND
CONDITIONS SHALL NOT APPLY.

http://www.mentor.com/terms_conditions/enduser.cfm

4. RESTRICTIONS ON USE. You may copy Software only as reasonably necessary to support the authorized use. Each
copy must include all notices and legends embedded in Software and affixed to its medium and container as received from
Mentor Graphics. All copies shall remain the property of Mentor Graphics or its licensors. You shall maintain a record of
the number and primary location of all copies of Software, including copies merged with other software, and shall make
those records available to Mentor Graphics upon request. You shall not make Software available in any form to any
person other than employees and on-site contractors, excluding Mentor Graphics' competitors, whose job performance
requires access and who are under obligations of confidentiality. You shall take appropriate action to protect the
confidentiality of Software and ensure that any person permitted access to Software does not disclose it or use it except as
permitted by this Agreement. Except as otherwise permitted for purposes of interoperability as specified by applicable
and mandatory local law, you shall not reverse-assemble, reverse-compile, reverse-engineer or in any way derive from
Software any source code. You may not sublicense, assign or otherwise transfer Software, this Agreement or the rights
under it, whether by operation of law or otherwise (“attempted transfer”), without Mentor Graphics’ prior written consent
and payment of Mentor Graphics’ then-current applicable transfer charges. Any attempted transfer without Mentor
Graphics' prior written consent shall be a material breach of this Agreement and may, at Mentor Graphics' option, result in
the immediate termination of the Agreement and licenses granted under this Agreement. The terms of this Agreement,
including without limitation, the licensing and assignment provisions shall be binding upon your successors in interest
and assigns. The provisions of this section 4 shall survive the termination or expiration of this Agreement.

5. LIMITED WARRANTY.

5.1. Mentor Graphics warrants that during the warranty period Software, when properly installed, will substantially
conform to the functional specifications set forth in the applicable user manual. Mentor Graphics does not warrant
that Software will meet your requirements or that operation of Software will be uninterrupted or error free. The
warranty period is 90 days starting on the 15th day after delivery or upon installation, whichever first occurs. You
must notify Mentor Graphics in writing of any nonconformity within the warranty period. This warranty shall not be
valid if Software has been subject to misuse, unauthorized modification or improper installation. MENTOR
GRAPHICS' ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS'
OPTION, EITHER (A) REFUND OF THE PRICE PAID UPON RETURN OF SOFTWARE TO MENTOR
GRAPHICS OR (B) MODIFICATION OR REPLACEMENT OF SOFTWARE THAT DOES NOT MEET THIS
LIMITED WARRANTY, PROVIDED YOU HAVE OTHERWISE COMPLIED WITH THIS AGREEMENT.
MENTOR GRAPHICS MAKES NO WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) SOFTWARE
WHICH IS LICENSED TO YOU FOR A LIMITED TERM OR LICENSED AT NO COST; OR
(C) EXPERIMENTAL BETA CODE; ALL OF WHICH ARE PROVIDED “AS IS.”

5.2. THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS
NOR ITS LICENSORS MAKE ANY OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, WITH
RESPECT TO SOFTWARE OR OTHER MATERIAL PROVIDED UNDER THIS AGREEMENT. MENTOR
GRAPHICS AND ITS LICENSORS SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF
INTELLECTUAL PROPERTY.

6. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY
WOULD BE VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS
OR ITS LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
(INCLUDING LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER
LEGAL THEORY, EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL MENTOR GRAPHICS' OR ITS LICENSORS'
LIABILITY UNDER THIS AGREEMENT EXCEED THE AMOUNT PAID BY YOU FOR THE SOFTWARE OR
SERVICE GIVING RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR
GRAPHICS AND ITS LICENSORS SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER. THE
PROVISIONS OF THIS SECTION 6 SHALL SURVIVE THE EXPIRATION OR TERMINATION OF THIS
AGREEMENT.

7. LIFE ENDANGERING ACTIVITIES. NEITHER MENTOR GRAPHICS NOR ITS LICENSORS SHALL BE
LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH THE USE OF SOFTWARE IN
ANY APPLICATION WHERE THE FAILURE OR INACCURACY OF THE SOFTWARE MIGHT RESULT IN
DEATH OR PERSONAL INJURY. THE PROVISIONS OF THIS SECTION 7 SHALL SURVIVE THE
EXPIRATION OR TERMINATION OF THIS AGREEMENT.

8. INDEMNIFICATION. YOU AGREE TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND ITS
LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE, OR LIABILITY, INCLUDING
ATTORNEYS' FEES, ARISING OUT OF OR IN CONNECTION WITH YOUR USE OF SOFTWARE AS

DESCRIBED IN SECTION 7. THE PROVISIONS OF THIS SECTION 8 SHALL SURVIVE THE EXPIRATION OR
TERMINATION OF THIS AGREEMENT.

9. INFRINGEMENT.

9.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against you alleging that
Software infringes a patent or copyright or misappropriates a trade secret in the United States, Canada, Japan, or
member state of the European Patent Office. Mentor Graphics will pay any costs and damages finally awarded
against you that are attributable to the infringement action. You understand and agree that as conditions to Mentor
Graphics' obligations under this section you must: (a) notify Mentor Graphics promptly in writing of the action;
(b) provide Mentor Graphics all reasonable information and assistance to defend or settle the action; and (c) grant
Mentor Graphics sole authority and control of the defense or settlement of the action.

9.2. If an infringement claim is made, Mentor Graphics may, at its option and expense: (a) replace or modify Software so
that it becomes noninfringing; (b) procure for you the right to continue using Software; or (c) require the return of
Software and refund to you any license fee paid, less a reasonable allowance for use.

9.3. Mentor Graphics has no liability to you if infringement is based upon: (a) the combination of Software with any
product not furnished by Mentor Graphics; (b) the modification of Software other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of Software as part of an infringing process; (e) a
product that you make, use or sell; (f) any Beta Code contained in Software; (g) any Software provided by Mentor
Graphics’ licensors who do not provide such indemnification to Mentor Graphics’ customers; or (h) infringement by
you that is deemed willful. In the case of (h) you shall reimburse Mentor Graphics for its attorney fees and other costs
related to the action upon a final judgment.

9.4. THIS SECTION IS SUBJECT TO SECTION 6 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS AND YOUR SOLE AND EXCLUSIVE REMEDY WITH RESPECT TO
ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT OR TRADE SECRET MISAPPROPRIATION
BY ANY SOFTWARE LICENSED UNDER THIS AGREEMENT.

10. TERM. This Agreement remains effective until expiration or termination. This Agreement will immediately terminate
upon notice if you exceed the scope of license granted or otherwise fail to comply with the provisions of Sections 1, 2, or
4. For any other material breach under this Agreement, Mentor Graphics may terminate this Agreement upon 30 days
written notice if you are in material breach and fail to cure such breach within the 30 day notice period. If Software was
provided for limited term use, this Agreement will automatically expire at the end of the authorized term. Upon any
termination or expiration, you agree to cease all use of Software and return it to Mentor Graphics or certify deletion and
destruction of Software, including all copies, to Mentor Graphics’ reasonable satisfaction.

11. EXPORT. Software is subject to regulation by local laws and United States government agencies, which prohibit export
or diversion of certain products, information about the products, and direct products of the products to certain countries
and certain persons. You agree that you will not export any Software or direct product of Software in any manner without
first obtaining all necessary approval from appropriate local and United States government agencies.

12. RESTRICTED RIGHTS NOTICE. Software was developed entirely at private expense and is commercial computer
software provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the U.S. Government or a U.S.
Government subcontractor is subject to the restrictions set forth in the license agreement under which Software was
obtained pursuant to DFARS 227.7202-3(a) or as set forth in subparagraphs (c)(1) and (2) of the Commercial Computer
Software - Restricted Rights clause at FAR 52.227-19, as applicable. Contractor/manufacturer is Mentor Graphics
Corporation, 8005 SW Boeckman Road, Wilsonville, Oregon 97070-7777 USA.

13. THIRD PARTY BENEFICIARY. For any Software under this Agreement licensed by Mentor Graphics from Microsoft
or other licensors, Microsoft or the applicable licensor is a third party beneficiary of this Agreement with the right to
enforce the obligations set forth herein.

14. AUDIT RIGHTS. You will monitor access to, location and use of Software. With reasonable prior notice and during
your normal business hours, Mentor Graphics shall have the right to review your software monitoring system and
reasonably relevant records to confirm your compliance with the terms of this Agreement, an addendum to this
Agreement or U.S. or other local export laws. Such review may include FLEXlm or FLEXnet report log files that you
shall capture and provide at Mentor Graphics’ request. Mentor Graphics shall treat as confidential information all of your
information gained as a result of any request or review and shall only use or disclose such information as required by law
or to enforce its rights under this Agreement or addendum to this Agreement. The provisions of this section 14 shall
survive the expiration or termination of this Agreement.

15. CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. THIS AGREEMENT SHALL BE
GOVERNED BY AND CONSTRUED UNDER THE LAWS OF THE STATE OF OREGON, USA, IF YOU ARE
LOCATED IN NORTH OR SOUTH AMERICA, AND THE LAWS OF IRELAND IF YOU ARE LOCATED
OUTSIDE OF NORTH OR SOUTH AMERICA. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusive jurisdiction of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when the
laws of Ireland apply. Notwithstanding the foregoing, all disputes in Asia (except for Japan) arising out of or in relation to
this Agreement shall be resolved by arbitration in Singapore before a single arbitrator to be appointed by the Chairman of
the Singapore International Arbitration Centre (“SIAC”) to be conducted in the English language, in accordance with the
Arbitration Rules of the SIAC in effect at the time of the dispute, which rules are deemed to be incorporated by reference
in this section 15. This section shall not restrict Mentor Graphics’ right to bring an action against you in the jurisdiction
where your place of business is located. The United Nations Convention on Contracts for the International Sale of Goods
does not apply to this Agreement.

16. SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in
full force and effect.

17. PAYMENT TERMS AND MISCELLANEOUS. You will pay amounts invoiced, in the currency specified on the
applicable invoice, within 30 days from the date of such invoice. Any past due invoices will be subject to the imposition
of interest charges in the amount of one and one-half percent per month or the applicable legal rate currently in effect,
whichever is lower. Some Software may contain code distributed under a third party license agreement that may provide
additional rights to you. Please see the applicable Software documentation for details. This Agreement may only be
modified in writing by authorized representatives of the parties. Waiver of terms or excuse of breach must be in writing
and shall not constitute subsequent consent, waiver or excuse.

Rev. 060210, Part No. 227900

	Bookcase
	Table of Contents
	List of Examples
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Assumptions
	Where to Find Our Documentation
	Download a Free PDF Reader With Search

	Mentor Graphics Support
	Before you Begin
	Example Designs

	Chapter 2 Conceptual Overview
	Design Optimizations
	Basic Simulation Flow
	Project Flow
	Multiple Library Flow
	Debugging Tools

	Chapter 3 Basic Simulation
	Create the Working Design Library
	Run the Simulation
	Set Breakpoints and Step through the Source
	Navigating the Interface

	Chapter 4 Projects
	Create a New Project
	Add Objects to the Project
	Changing Compile Order (VHDL)
	Compile the Design
	Load the Design

	Organizing Projects with Folders
	Add Folders
	Moving Files to Folders

	Simulation Configurations

	Chapter 5 Working With Multiple Libraries
	Creating the Resource Library
	Creating the Project
	Linking to the Resource Library
	Linking in Verilog
	Linking in VHDL

	Permanently Mapping VHDL Resource Libraries

	Chapter 6 Simulating Designs With SystemC
	Setting up the Environment
	Preparing an OSCI SystemC design
	Compiling a SystemC-only Design
	Mixed SystemC and HDL Example
	Viewing SystemC Objects in the GUI
	Setting Breakpoints and Stepping in the Source Window
	Examining SystemC Objects and Variables
	Removing a Breakpoint

	Chapter 7 Analyzing Waveforms
	Loading a Design
	Add Objects to the Wave Window
	Zooming the Waveform Display
	Using Cursors in the Wave Window
	Working with a Single Cursor
	Working with Multiple Cursors

	Saving and Reusing the Window Format

	Chapter 8 Creating Stimulus With Waveform Editor
	Load a Design Unit
	Create Graphical Stimulus with a Wizard
	Edit Waveforms in the Wave Window
	Save and Reuse the Wave Commands
	Exporting the Created Waveforms
	Simulating with the Testbench File
	Importing an EVCD File

	Chapter 9 Debugging With The Dataflow Window
	Exploring Connectivity
	Tracing Events
	Tracing an X (Unknown)
	Displaying Hierarchy in the Dataflow Window

	Chapter 10 Viewing And Initializing Memories
	View a Memory and its Contents
	Navigate Within the Memory

	Export Memory Data to a File
	Initialize a Memory
	Interactive Debugging Commands

	Chapter 11 Analyzing Performance With The Profiler
	View Profile Details
	Filtering and Saving the Data

	Chapter 12 Simulating With Code Coverage
	Coverage Statistics in the Main window
	Coverage Statistics in the Source Window
	Toggle Statistics in the Objects Pane
	Excluding Lines and Files from Coverage Statistics
	Creating Code Coverage Reports

	Chapter 13 Debugging With PSL Assertions
	Compile the Example Design
	Load and Run Without Assertions
	Using Assertions to Speed Debugging
	Debugging the Assertion Failure

	Chapter 14 SystemVerilog Assertions and Functional Coverage
	Design Files for this Lesson
	Understanding the Interleaver Design
	The Testbench

	Related Reading
	Run the Simulation without Assertions
	Run the Simulation with Assertions
	Debugging with Assertions
	Exploring Functional Coverage
	Creating Functional Coverage Reports
	Lesson Wrap-Up

	Chapter 15 Using the SystemVerilog DPI
	Chapter 16 Using SystemVerilog DPI for Data Passing
	Mapping Verilog and C

	Chapter 17 Comparing Waveforms
	Creating the Reference Dataset
	Creating the Test Dataset
	Comparing the Simulation Runs
	Viewing Comparison Data
	Comparison Data in the Wave Window
	Comparison Data in the List Window

	Saving and Reloading Comparison Data

	Chapter 18 Automating Simulation
	Creating a Simple DO File
	Running in Command-Line Mode
	Using Tcl with the Simulator

	Index
	End-User License Agreement
	Documentation Feedback

