Questa™ SV/AFV Tutorial

Software Version 6.4c¢

© 1991-2008 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely
at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
Telephone: 503.685.7000
Toll-Free Telephone: 800.592.2210
Website: www.mentor.com
SupportNet: supportnet.mentor.com/
Send Feedback on Documentation: supportnet.mentor.com/user/feedback_form.cfm

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other third parties. No one is permitted to use these Marks without the
prior written consent of Mentor Graphics or the respective third-party owner. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/terms_conditions/trademarks.cfm.

http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/user/feedback_form.cfm
http://www.mentor.com/terms_conditions/trademarks.cfm

Table of Contents

Chapter 1
LNt OdUCTION. . .. e 15
ASSUMPLIONS. . . . oottt et e e e e e e 15
Whereto Find Our Documentationttt e e 15
Download aFree PDF Reader WithSearch. 16
Mentor GraphiCs SUPPOIT.ot e e e e 16
BeforeyoU Begin. oo 17
EXamMPIE DESIgNS . . . e e 17
Chapter 2
Conceptual OVErVIBW . . .ot e e 19
Design OptimIZations.ottt e e e e 19
Basic SImulation FIOW. o e 19
PrOJECt FlOW . . . o 20
Multiple Library FIOWo 21
DebUggIiNg TOOISot 22
Chapter 3
BasiC SIMUIatioNn o 25
CreatetheWorking Design Library. e e e 26
Runthe SIMuUlation 30
Set Breakpointsand Step throughtheSourceo i 32
Navigatingthe Interface. 35
Chapter 4
PO ECES. . o 41
CreateaNew ProjeCto 41
Add Objectstothe Project e 42
Changing Compile Order (VHDL)ot e e e 44
Compilethe DesigN. 45
Load the DESIGNot 46
Organizing Projectswith Folders. e 47
Add FOIAErS. . .o 47
Moving Filesto Folders 49
Simulation Configurations. i e 50
Chapter 5
Working With MultipleLibraries. e 55
Creatingthe Resource Library. i e 55
Creating the ProjeCto 57
Linkingtothe Resource Library 58

Questa SV/AFV Tutorial, v6.4c 3

Table of Contents

Linking INVErilog.o 59
LinkingiNVHDL 60
Permanently Mapping VHDL ResourcelLibraries oo, 62
Chapter 6
Simulating DesignsWith SystemC 65
Settingupthe Environment 66
Preparing an OSCI SystemC designo ot e 66
Compiling aSystemC-only Designo 70
Mixed SystemCand HDL Example e 70
Viewing SystemC Objectsinthe GUI e 74
Setting Breakpoints and Stepping inthe SourceWindow 75
Examining SystemC Objectsand Variables. 77
Removing aBreakpoint 79
Chapter 7
AnalyzZiNg WavelOrmS 81
Loading @aDeSigN.o 82
Add Objectstothe Wave WIindow e 82
ZoomingtheWaveformDisplay 84
Using Cursorsinthe Wave Window e 84
Workingwith aSingle CUrsor e e e 85
Working with Multiple CUrsors e 86
Saving and Reusing theWindow Format i 87
Chapter 8
Creating StimulusWith Waveform Editor 89
Load aDesign Unit 89
Create Graphical StimuluswithaWizard. i 90
Edit WaveformsintheWave Window 93
Saveand Reusethe Wave Commands.ottt 96
Exporting the Created Waveforms. e 97
Simulatingwiththe Testbench File. 98
Importingan EVCD File. 100
Chapter 9
Debugging With The Dataflow Window. s 103
EXploring ConNeCtiVILYo 104
TraCing EVeNtS. 106
Tracingan X (UNKNOWN)ot e et et e ettt 110
Displaying Hierarchy inthe Dataflow Window 112
Chapter 10
Viewing And Initializing Memories et et e 115
View aMemory and itSCONtENtS.ottt e 116
Navigate Withinthe Memory e 119
Export Memory DatatoaFile. 121

4 Questa SV/AFV Tutorial, v6.4c

Table of Contents

INItTAlIZE AMEMONY . . .o e 123
Interactive Debugging Commandso ittt 126
Chapter 11
Analyzing Performance With TheProfiler 131
View Profile Detalls.o 136
Filteringand SavingtheData e e 137
Chapter 12
Simulating With Code Coverage. vt e et et 141
Coverage StatisticsintheMainwindow i 145
Coverage Statisticsinthe SourceWindow o i 146
Toggle Statisticsinthe ObjectsPane. i e 148
Excluding Lines and Filesfrom Coverage Statistics.ccviiiiinnnen.. .. 149
Creating Code Coverage REPOITS.ottt e ettt et e 150
Chapter 13
Debugging With PSL ASSErtioNS.ottt et 153
Compilethe Example Design oo e e 153
Load and RuN Without ASSErtioNS.ot e 154
Using Assertionsto Speed Debugging . . .« o v v vt it 155
Debuggingthe Assertion Failure. 160
Chapter 14
SystemVerilog Assertions and
Functional Coverage.ot e 165
Design Filesfor thiSLessont e 165
Understanding the Interleaver Designt e 165
Related Reading 168
Run the Simulation without ASSErtionS.o e 168
Run the Simulation With ASSErtions i e 169
Debugging With ASSErtioNS oot 171
Exploring Functional Coverage.t 179
Creating Functional Coverage Reportst e 190
LeSSON Wrap-Up . .o 192
Chapter 15
Usingthe SystemVerilog DPI e e 193
Chapter 16
Using SystemVerilog DPI for DataPassingt 203
Mapping Verilogand Ct e e e 203
Chapter 17
Comparing Waveforms 215
Creatingthe Reference Datasetttt e e e 216
Creatingthe Test Dataset. e e e e 216

Questa SV/AFV Tutorial, v6.4c 5

Table of Contents

Comparingthe SImulation RUNS o e 218
Viewing Comparison DataLo 219
Comparison DataintheWaveWindow i 219
Comparison DataintheLiss Window i, 220
Saving and Reloading Comparison Data.ot 221
Chapter 18
Automating SImulation e 225
CreatingaSIimple DO File. 225
Running in Command-Line Mode.t 226
Using Tcl withthe Simulator. e e 229
Index

End-User License Agreement

6 Questa SV/AFV Tutorial, v6.4c

List of Examples

Example 14-1. Assertion Property Definition

Questa SV/AFV Tutorial, v6.4c

List of Figures

Figure 2-1. Basic Simulation Flow - Overview Lab o, 20
Figure 2-2. Project FIOWo o 21
Figure 2-3. Multiple Library FIOW. e 22
Figure 3-1. Basic Simulation Flow - SimulationLab 25
Figure 3-2. The CreateaNew Library Dialog. s 26
Figure 3-3. work Library intheWorkspace. 27
Figure 3-4. Compile Source FilesDialog 28
Figure 3-5. Verilog Modules Compiled intowork Library, 28
Figure 3-6. Workspace sim Tab Displays Design Hierarchy 29
Figure 3-7. Object Pane DisplaysDesign Objects. 30
Figure 3-8. Using the Popup Menu to Add Signalsto WaveWindow 31
Figure 3-9. Waves DrawvninWave Window. 32
Figure 3-10. Setting Breakpoint in SourceWindow, 33
Figure 3-11. Setting Restart FUNCLIONSt 34
Figure 3-12. Blue Arrow Indicates Where Simulation Stopped.. 34
Figure 3-13. Values Shown in ObjectsWindow 35
Figure 3-14. Parameter Name and Vaue in Source ExamineWindow 35
Figure 3-15. TheMain Window e e e 36
Figure 3-16. Window/Pane Control 1ICONS.t 37
Figure 3-17. zooming inon WorkspacePane 38
Figure 3-18. Panes Rearranged inMainWindow i, 39
Figure 4-1. Create Project Dialog - Project Lab 42
Figure 4-2. Adding New ItemstoaProject., 43
Figure4-3. Addfileto Project Dialog. oo 43
Figure 4-4. Newly Added Project FilesDisplay a“?" forStatus 44
Figure 4-5. Compile Order Dialog.o oot 45
Figure 4-6. Library Tab with Expanded Library 46
Figure4-7. Structure TabforaLoaded Design. 47
Figure 4-8. Adding New FoldertoProject, 48
Figure4-9. A Folder WithinaProject. i i 438
Figure 4-10. Creating Subfolder 48
Figure4-11. A folder withaSub-folder 49
Figure 4-12. Changing File Location viathe Project Compiler SettingsDialog. 49
Figure 4-13. Simulation ConfigurationDialog 51
Figure 4-14. A Simulation ConfigurationintheProject Tab 52
Figure 4-15. Transcript Shows Options for Simulation Configurations. 52
Figure 5-1. Creating New ResourceLibrary, 56
Figure 5-2. Compiling intothe Resource Library 57
Figure 5-3. VHDL Simulation Warning Reported in MainWindow 59
Figure 5-4. Specifying a Search Library inthe Smulate Dialog. 60

Questa SV/AFV Tutorial, v6.4c

List of Figures

Figure 5-5. Mapping to theparts lib Library i 61
Figure 5-6. Adding LIBRARY and USE Statementsto the Testbench................. 62
Figure 6-1. SystemC Code Before and After Modifications. 68
Figure 6-2. Editing the SystemC Header File.. it 69
Figure6-3. Theringbuf h File. e 72
Figure 6-4. Thetest_ringbuf.cpp File e 72
Figure 6-5. Thetest_ringbuf DeSigNot e 73
Figure 6-6. SystemC Objectsinthework Library. 74
Figure 6-7. SystemC Objectsin thesim Tab of theWorkspace 75
Figure 6-8. Active BreakpointinaSystemC File........ 76
Figure 6-9. Simulation Stopped at Breakpoint, 77
Figure 6-10. Steppinginto aSeparate File. i 77
Figure 6-11. Output of show Command oottt 78
Figure 6-12. SystemC Primitive Channelsinthe WaveWindow 79
Figure 7-1. Panesof theWaveWindow 81
Figure 7-2. Undocking theWave Window, 83
Figure 7-3. Zooming inwiththeMouse Pointer 84
Figure 7-4. Working with a Single Cursor inthe WaveWindow 85
Figure 7-5. Renaming @ CurSorottt e e e e 86
Figure 7-6. Interval Measurement Between TWO CUISOrS. ovo i i ei e e 87
Figure 7-7. A Locked Cursor intheWaveWindow i, 87
Figure 8-1. Initiating the Create Pattern Wizard from the ObjectsPane. 91
Figure 8-2. Create Pattern Wizard. i e 91
Figure 8-3. Specifying Clock Pattern Attributes. L. 92
Figure 8-4. Theclk Waveform. e 92
Figure8-5. Thereset Waveform e 93
Figure 8-6. Edit Insert PulseDialog e 93
Figure 8-7. Signal reset withan Inserted Pulse. 94
Figure 8-8. Edit Stretch Edge Dialog. 9
Figure 8-9. Stretching an Edgeontheclk Signal. L. 95
Figure 8-10. Deletingan Edgeontheclk Signal i 95
Figure 8-11. The Export WaveformDialog. 97
Figure 8-12. The counter Waveform Reactsto Stimulus Patterns. 98
Figure 8-13. The export Testbench Compiled into thework Library 99
Figure 8-14. Waves from Newly Created Testbench. 99
Figure 8-15. EVCD File Loaded inWaveWindow, 100
Figure 8-16. Simulation resultswithEVCD File o i, 101
Figure 9-1. A Signal inthe Dataflow Windowo iin.... 105
Figure 9-2. Expanding the View to Display Connected Processes 105
Figure 9-3. Thetest Net Expanded to Show All Drivers., 106
Figure 9-4. The embedded waveviewer pane., 107
Figure 9-5. Signals Added to the Wave Viewer Automaticaly 108
Figure 9-6. Cursor in Wave Viewer MarksLastEvent. 109
Figure9-7. Tracingthe Event Set i e 109
Figure 9-8. A Signal withUnknownValues. 110

Questa SV/AFV Tutorial, v6.4c 9

List of Figures

Figure 9-9. ChaseX Identifies Cause of Unknownont out 111
Figure 9-10. Displaying Hierarchy in the Dataflow Window 113
Figure 10-1. The mem Tab in the MDI Frame Shows AddressesandData 117
Figure 10-2. The Memory Display Updateswith the Simulation 117
Figure 10-3. Changingthe AddressRadiX. i 118
Figure 10-4. New AddressRadix and LineLength. 119
Figure 10-5. GOt DialOg. o v o ettt 119
Figure 10-6. Editing the AddressDirectly. i, 120
Figure 10-7. Searching for a Specific DataVaue. 120
Figure 10-8. Export Memory Dialog.o 122
Figure 10-9. Import Memory Dialog.o 124
Figure 10-10. Initialized Memory from Fileand Fill Pattern 125
Figure 10-11. Data Increments Starting at Address251, 126
Figure 10-12. Original Memory Content.ttt i, 127
Figure 10-13. Changing Memory Content for aRange of Addresses. 127
Figure 10-14. Random Content Generated for aRange of Addresses. 128
Figure 10-15. Changing Memory Contents by Highlighting. 128
Figure 10-16. Entering Datato Change. ot 129
Figure 10-17. Changed Memory Contents for the Specified Addresses. 129
Figure 11-1. Sampling Reported inthe Transcript 133
Figure 11-2. The Profile Window e 134
Figure 11-3. Design Unit Performance Profile o it 135
Figure 11-4. Expand the Hierarchical FunctionCall Tree........................... 136
Figure 11-5. The Source Window Showing aLine fromthe ProfileData 136
Figure 11-6. Profile Details of the Function Tcl_Close.ot 137
Figure 11-7. Profile Detailsof Functionsm 0. i, 137
Figure 11-8. The Profiler Toolbar e 138
Figure 11-9. The Filtered ProfileData.ot e 138
Figure 11-10. The Profile Report Dialog. oo e e 139
Figure 11-11. Thecalltreerpt Report e 140
Figure 12-1. Code Coverage Columnsin the Main Window Workspace. 143
Figure 12-2. Missed CoveragePane e 143
Figure 12-3. Instance CoveragePanet e 144
Figure 12-4. DetallS Pane.o 144
Figure 12-5. Current EXclusionsPane. i, 144
Figure 12-6. Right-click a Column Heading to Show ColumnList 145
Figure 12-7. Coverage Statisticsinthe SourceWindow, 147
Figure 12-8. Coverage Numbers Shown by Hovering the Mouse Pointer 148
Figure 12-9. Toggle Coverageinthe ObjectsPane. 149
Figure 12-10. Excluding aFile Using Menusinthe Workspace. 150
Figure 12-11. Coverage Text Report Dialog.o e 151
Figure 12-12. Coverage HTML Report Dialog. oo oo 152
Figure 12-13. Coverage ExclusionsReport Dialog.o 152
Figure 13-1. Transcript After Running Simulation Without Assertions. 155
Figure 13-2. Change AssertionsDialog. oo 157

10 Questa SV/AFV Tutorial, v6.4c

List of Figures

Figure 13-3. Assertion Failure Indicated in WaveWindow 158
Figure 13-4. The Assertion Debug Pane Shows Failed Assertion Details 159
Figure 13-5. Assertion failure indicated inthe Analysispane. 160
Figure 13-6. Source Codefor Failed ASsertion. 161
Figure 13-7. Examining we_n With Respecttomem state. 162
Figure 13-8. Dataflow OptionsDialog oot 163
Figure 13-9. Viewingwe_ninthe Dataflow Window. 163
Figure 13-10. Finding the Buginthe SourceCode., 164
Figure 14-1. Incoming Data. oot 165
Figure 14-2. Block Diagram of theInteleaver. i, 166
Figure 14-3. Block Diagram of the Testbench. 167
Figure 14-4. First Simulation Stopsat Errorot 169
Figure 14-5. Enabling Assertion Failure Trackingand Action. 170
Figure 14-6. AssertionsSettoBreak onFailure 171
Figure 14-7. AssertionsinWave Window. e 171
Figure 14-8. Assertion Failure Messageinthe Transcript., 172
Figure 14-9. Assertions Tab Shows FailureCount oo, 173
Figure 14-10. Source Pane Pointer Shows Where Simulation Stopped 173
Figure 14-11. The Inverted Red Triangle Indicates an Assertion Failure. 174
Figure 14-12. Settingthe RadiX. e e 175
Figure 14-13. Diagnosing Assertion Failureinthe Wave Window. 176
Figure 14-14. The wadder11 Signal in the Dataflow Window 177
Figure 14-15. Source Code for the ALWAYSBIlock 178
Figure 14-16. Source Code for waddr[11]o 178
Figure 14-17. Covergroup COOEo ittt e 179
Figure 14-18. Covergroup Bins.o 180
Figure 14-19. CoVErgroUP SM SV, .« o v o vttt et e e et e e e e et 181
Figure 14-20. Binsfor thesm_cvg Covergroup. oo vt e e 182
Figure 14-21. Viewing the Source Codefor aCovergroup.o eiineen.n .. 183
Figure 14-22. Source Code for ram cvg Covergroup . « .« oo v v e e e eee e 183
Figure 14-23. Covergroup Instancesfor ram CVg.ov i ii i e e s 184
Figure 14-24. Cover Directive for the Interleaver Design. 185
Figure 14-25. Source Code for the Cover Directive, 185
Figure 14-26. Scoreboard Informationinthe Transcript. 186
Figure 14-27. Covergroup Coverageinthe AnalysisWindow 187
Figure 14-28. Cover Directive Counts State Transitions. 188
Figure 14-29. Changing the Cover Directive View to Count View 188
Figure 14-30. First Temporal and Count Mode Views of Cover Directive. 189
Figure 14-31. Second Temporal and Count Mode Views of Cover Directive 189
Figure 14-32. Functional CoverageReport Didlog 190
Figure 14-33. The Functional Coverage Report 191
Figure 15-1. Source Codefor Moduletest.sv 194
Figure 15-2. Source Code for theforeign.cFile-DPI Lab. 196
Figure 15-3. The sv_YellowLight Functioninthetest.svFile 196
Figure 15-4. Thesv_WaitForRed Task inthetest.svFile............ 197

Questa SV/AFV Tutorial, v6.4c 11

List of Figures

Figure 15-5. The sv_RedLight Functioninthetest.svFile 197
Figure 15-6. Function Callsinthetest.svFile..........., 198
Figure 15-7. Makefile for Compiling and Running on UNIX or Linux Platforms. 198
Figure 15-8. The windows.bat File for Compiling and Running in Windows - DPI Lab... 199
Figure 15-9. Thelight Signal inthe ObjectsPane. oo, 201
Figure 15-10. Thelight Signal intheWaveWindow 201
Figure 15-11. Source Code for teSt.oV oot 202
Figure 16-1. Source Code for the foreign.c File- DataPassingLab. 204
Figure 16-2. Source Codefor thetest.svModule 205
Figure 16-3. Makefile for Compiling and Running on UNIX and Linux Platforms. 206

Figure 16-4. The windows.bat File for Compiling and Running in Windows - Data Passing Lab
207

Figure 16-5. Line 12 of test.svinthe SourceWindow oo, 209
Figure 16-6. TheValueof int_varisCurrently O, 209
Figure 16-7. The Vaue of int_var Printed to the Transcript Window 210
Figure 16-8. TheValueof bit_varisO. e 210
Figure 16-9. Transcript Showsthe Value Returned for bit var 210
Figure 16-10. Thedpi_typeshFile s 211
Figure 16-11. The Transcript Showsthe Correct Valueof logic X. 213
Figure 17-1. First dialog of the Waveform Comparison Wizard. 218
Figure 17-2. Second dialog of the Waveform ComparisonWizard 218
Figure 17-3. Comparison information in the Workspace and Objectspanes 219
Figure 17-4. Comparison objectsinthe Wavewindow. 220
Figure 17-5. The COmpareiCons oot e e 220
Figure 17-6. Compare differencesintheListwindow 221
Figure 17-7. Coverage datasaved to atextfile............ 222
Figure 17-8. Displaying Log FilesintheOpendialog 223
Figure 17-9. Reloading saved comparisondata.ot 223
Figure 18-1. A Dataset inthe Main Window Workspace 228
Figure 18-2. Buttons Added to the Main Window Toolbar. 230

12 Questa SV/AFV Tutorial, v6.4c

List of Tables

Table1-1. Documentation List i e e 15
Table3-1. The MainWindowt et e 36
Table 6-1. Supported Operating Systemsfor SystemC 66
Table 11-1. Columnsinthe ProfileWindow 134
Table 12-1. Coverage lconsinthe SourceWindowccoviiienn... 147

Questa SV/AFV Tutorial, v6.4c 13

List of Tables

14

Questa SV/AFV Tutorial, v6.4c

Chapter 1
Introduction

Assumptions

We assume that you are familiar with the use of your operating system. Y ou should also be
familiar with the window management functions of your graphic interface: OpenWindows,
OSF/Motif, CDE, KDE, GNOME, or Microsoft Windows 2000/XP.

We also assume that you have a working knowledge of the language in which your design
and/or testbench iswritten (i.e., VHDL, Verilog, etc.). Although QuestaSim™ is an excellent
tool to use while learning HDL concepts and practices, this document is not written to support
that goal.

Where to Find Our Documentation

QuestaSim documentation is available from our website at

WWW. ment or . cond suppor t net

or from the tool by selecting Help :

Table 1-1. Documentation List

Document Format How to get it
Installation & Licensing PDF Help > PDF Bookcase
Guide HTML and PDF | Help > InfoHub
Quick Guide PDF Help > PDF Bookcase
(command and feature and
quick-reference) Help > InfoHub
Tutorial PDF Help > PDF Bookcase
HTML and PDF | Help > InfoHub
User’s Manual PDF Help > PDF Bookcase
HTML and PDF | Help > InfoHub
Reference Manual PDF Help > PDF Bookcase
HTML and PDF | Help > InfoHub

Questa SV/AFV Tutorial, v6.4c 15

http://www.mentor.com/supportnet

Introduction
Mentor Graphics Support

Table 1-1. Documentation List

Document Format How to get it

Foreign Language PDF Help > PDF Bookcase

Interface Manual HTML Help > InfoHub

Command Help ASCII type help [command name] at the prompt in
the Transcript pane

Error message help ASCII type verror <msgNum> at the Transcript or
shell prompt

Tcl Man Pages (Tcl HTML select Help > Tcl Man Pages, or find

manual) contents.htm in \modeltech\docs\tcl _help_html

Technotes HTML available from the support site

Download a Free PDF Reader With Search

QuestaSim PDF documentation requires an Adobe Acrobat Reader for viewing. The Reader is
available without cost from Adobe at

ww, adobe. com

Mentor Graphics Support

Mentor Graphics software support includes software enhancements, technical support, accessto
comprehensive online services with SupportNet, and the optional On-Site Mentoring service.
For details, see:

http://supportnet. mentor.com about/

If you have questions about this software release, please log in to SupportNet. Y ou may search
thousands of technical solutions, view documentation, or open a Service Request online at:

http://supportnet.nentor.com

If your siteisunder current support and you do not have a SupportNet login, you may easily
register for SupportNet by filling out the short form at:

http://supportnet.mentor.com user/register.cfm

All customer support contact information can be found on our web site at:

http://supportnet.nmentor.com contacts/supportcenters/

16 Questa SV/AFV Tutorial, v6.4c

http://www.adobe.com
http://supportnet.mentor.com/about/
http://supportnet.mentor.com/
http://supportnet.mentor.com/user/register.cfm
http://supportnet.mentor.com/contacts/supportcenters/

Introduction
Before you Begin

Before you Begin

Preparation for some of the lessons leaves certain details up to you. You will decide the best
way to create directories, copy files, and execute programs within your operating system.
(When you are operating the ssmulator within QuestaSim’s GUI, the interface is consistent for

all platforms.)

Examples show Windows path separators - use separators appropriate for your operating system
when trying the examples.

Example Designs

QuestaSim comes with Verilog and VHDL versions of the designs used in these lessons. This
allowsyou to do the tutorial regardless of which license type you have. Though we havetried to
minimize the differences between the Verilog and VHDL versions, we could not do so in all
cases. In cases where the designs differ (e.g., line numbers or syntax), you will find language-
specific instructions. Follow the instructions that are appropriate for the language you use.

Questa SV/AFV Tutorial, v6.4c 17

Introduction
Before you Begin

18 Questa SV/AFV Tutorial, v6.4c

Chapter 2
Conceptual Overview

Introduction
QuestaSim is a verification and simulation tool for VHDL, Verilog, SystemV erilog, and mixed-
language designs.

This lesson provides a brief conceptual overview of the QuestaSim simulation environment. It
Is divided into five topics, which you will learn more about in subsequent lessons.

» Design Optimizations — Refer to the Optimizing Designs with vopt chapter in the
User’'s Manual.

» Basic simulation flow — Refer to Chapter 3 Basic Smulation.
* Project flow — Refer to Chapter 4 Projects.
* Multiplelibrary flow — Refer to Chapter 5 Working With Multiple Libraries.

» Debugging tools — Refer to remaining lessons.

Design Optimizations

Before discussing the basic ssmulation flow, it is important to understand design optimization.
By default, QuestaSim optimizations are automatically performed on all designs. These
optimizations are designed to maximize simulator performance, yielding improvements up to
10X, in some Verilog designs, over non-optimized runs.

Global optimizations, however, may have an impact on the visibility of the design simulation
results you can view — certain signals and processes may not be visible. If these signals and
processes are important for debugging the design, it may be necessary to customize the
simulation by removing optimizations from specific modules.

It isimportant, therefore, to make an informed decision asto how best to apply optimizationsto
your design. The tool that performs global optimizations in QuestaSim is called vopt. Please
refer to the Optimizing Designs with vopt chapter in the QuestaSim User’s Manual for a
complete discussion of optimization trade-offs and customizations. For details on command
syntax and usage, please refer to vopt in the Reference Manual.

Basic Simulation Flow
The following diagram shows the basic steps for smulating a design in QuestaSim.

Questa SV/AFV Tutorial, v6.4c 19

Conceptual Overview
Project Flow

Figure 2-1. Basic Simulation Flow - Overview Lab

Create a working library

'

Compile design files

'

Load and Run simulation

'

Debug results

Creating the Working Library

In QuestaSim, all designs are compiled into alibrary. You typically start anew
simulation in QuestaSim by creating aworking library called "work". "Work" isthe
library name used by the compiler as the default destination for compiled design units.

Compiling Your Design

After creating the working library, you compile your design unitsinto it. The QuestaSim
library format is compatible across all supported platforms. Y ou can simulate your
design on any platform without having to recompile your design.

L oading the Simulator with Y our Design and Running the Simulation

With the design compiled, you load the simulator with your design by invoking the
simulator on atop-level module (Verilog) or a configuration or entity/architecture pair
(VHDL).

Assuming the design loads successfully, the ssmulation timeis set to zero, and you enter
arun command to begin simulation.

Debugging Y our Results

If you don’t get the results you expect, you can use QuestaSim’ s robust debugging
environment to track down the cause of the problem.

Project Flow

A project is acollection mechanism for an HDL design under specification or test. Even though
you don’t have to use projects in QuestaSim, they may ease interaction with the tool and are
useful for organizing files and specifying simulation settings.

20

Questa SV/AFV Tutorial, v6.4c

Conceptual Overview
Multiple Library Flow

The following diagram shows the basic steps for simulating a design within a QuestaSim
project.

Figure 2-2. Project Flow

Create a project

v

Add files to the project

'

Compile design files

'

Run simulation

'

Debug results

Asyou can see, the flow is similar to the basic simulation flow. However, there are two
important differences:

* You do not have to create aworking library in the project flow; it is done for you
automatically.

* Projects are persistent. In other words, they will open every time you invoke QuestaSim
unless you specifically close them.

Multiple Library Flow

QuestaSim uses librariesin two ways: 1) as alocal working library that contains the compiled
version of your design; 2) as aresource library. The contents of your working library will
change as you update your design and recompile. A resource library istypicaly static and
serves as a parts source for your design. Y ou can create your own resource libraries, or they
may be supplied by another design team or athird party (e.g., a silicon vendor).

Y ou specify which resource libraries will be used when the design is compiled, and there are
rules to specify in which order they are searched. A common example of using both aworking
library and aresource library is one where your gate-level design and testbench are compiled
into the working library, and the design references gate-level models in a separate resource
library.

Questa SV/AFV Tutorial, v6.4c 21

Conceptual Overview
Debugging Tools

The diagram below shows the basic steps for simulating with multiple libraries.

Figure 2-3. Multiple Library Flow

Create a working library

'

Compile design files

'

Link to resource libraries

'

Run simulation

'

Debug results

Y ou can aso link to resource libraries from within a project. If you are using a project, you
would replace the first step above with these two steps: create the project and add the testbench
to the project.

Debugging Tools

QuestaSim offers numerous tools for debugging and analyzing your design. Several of these
tools are covered in subsequent lessons, including:

» Using projects

* Working with multiple libraries

e Simulating with SystemC

» Setting breakpoints and stepping through the source code
* Viewing waveforms and measuring time

» Exploring the "physical" connectivity of your design

* Viewing and initializing memories

» Creating stimulus with the Waveform Editor

22 Questa SV/AFV Tutorial, v6.4c

Conceptual Overview
Debugging Tools

* Anayzing simulation performance

» Testing code coverage

e Comparing waveforms

» Debugging with PSL assertions

» Using SystemVerilog assertions and cover directives
» Using the SystemVerilog DPI

* Automating simulation

Questa SV/AFV Tutorial, v6.4c 23

Conceptual Overview
Debugging Tools

24 Questa SV/AFV Tutorial, v6.4c

Chapter 3
Basic Simulation

Introduction

In this lesson you will go step-by-step through the basic simulation flow:
Figure 3-1. Basic Simulation Flow - Simulation Lab
Create a working library

'

Compile design units

'

Run simulation

'

Debug results

Design Files for this Lesson

The sample design for thislesson is asimple 8-hit, binary up-counter with an associated
testbench. The pathnames are as follows:

Verilog — <install_dir>/examples/tutorial s/'verilog/basicS mulation/counter.v and tcounter.v
VHDL —<install_dir>/exampleg/tutorials/vhdl/basicS mulation/counter.vhd and tcounter.vhd

This lesson uses the Verilog files counter.v and tcounter.v. If you have aVHDL license, use
counter.vhd and tcounter.vhd instead. Or, if you have amixed license, feel free to use the
Verilog testbench with the VHDL counter or vice versa.

Related Reading

User's Manual Chapters: Design Libraries, Verilog and SystemVerilog Simulation, and VHDL
Simulation.

Reference Manual commands: vlib, vmap, vlog, vcom, vopt, view, and run.

Questa SV/AFV Tutorial, v6.4c 25

Basic Simulation
Create the Working Design Library

Create the Working Design Library

Before you can simulate a design, you must first create alibrary and compile the source code
into that library.

1. Create anew directory and copy the design files for thislesson into it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons).

Verilog: Copy counter.v and tcounter.v files from
/<install_dir>/examples/tutorial s/verilog/basicS mulation to the new directory.

VHDL : Copy counter.vhd and tcounter.vhd files from
/<install _dir>/examples/tutorials/'vhdl/basicSmulation to the new directory.

. Start QuestaSim if necessary.

a Typevsim at aUNIX shell prompt or use the QuestaSim icon in Windows.

Upon opening QuestaSim for the first time, you will see the Welcome to QuestaSim
dialog. Click Close.

b. Select File> Change Directory and change to the directory you created in step 1.

. Create the working library.

a. Select File>New > Library.

This opens a dialog where you specify physical and logical nhames for the library
(Figure 3-2). You can create anew library or map to an existing library. We'll be
doing the former.

Figure 3-2. The Create a New Library Dialog

Create a New Library

—LCreate

¥ i3 new library and a logical mapping o it

" amap to an existing library

— Library Mame:

|W|:|rk

— Library Phozical Marme:

|w::-rk

0K i Cancel

b. Typework inthe Library Name field (if it isn’'t already entered automatically).

26

Questa SV/AFV Tutorial, v6.4c

Basic Simulation
Create the Working Design Library

c. Click OK.

QuestaSim creates a directory called work and writes a specially-formatted file
named _info into that directory. The _info file must remain in the directory to
distinguish it as a QuestaSim library. Do not edit the folder contents from your
operating system; all changes should be made from within QuestaSim.

QuestaSim also addsthe library to thelist in the Workspace (Figure 3-3) and records
the library mapping for future reference in the QuestaSim initialization file
(modelsim.ini).

Figure 3-3. work Library in the Workspace

'l"IName |T_I,I|:ue 1=
WL ok Library
Wl ital2000 Library
| ieee Library
Wl rmodelsinn_lib Library
L =td Library
| std_deweloperskit Library |
W srnopsys Library
Y — o

Libramny

When you pressed OK in step 3c above, the following was printed to the Transcript:

vlib work
vmap wor k wor k

These two lines are the command-line equivalents of the menu selections you made. Many
command-line equivaents will echo their menu-driven functionsin this fashion.
Compile the Design

With the working library created, you are ready to compile your source files.

Y ou can compile by using the menus and dialogs of the graphic interface, asin the Verilog
example below, or by entering acommand at the QuestaSim> prompt.

1. Compile counter.v and tcounter.v.

a. Select Compile > Compile. This opens the Compile Source Files dialog
(Figure 3-4).

If the Compile menu option is not available, you probably have a project open. If so,
close the project by making the Workspace pane active and selecting File > Close
from the menus.

Questa SV/AFV Tutorial, v6.4c 27

Basic Simulation
Create the Working Design Library

b. Select both counter.v and tcounter.v modules from the Compile Source Files dialog
and click Compile. The files are compiled into the work library.

c. When compileisfinished, click Done.

Figure 3-4. Compile Source Files Dialog

2| x|
Library: Iwu:urk j
Loak ir: I) basicSimulation j - £ Eo-

counker,w

bcounter.y

Fil= name: I"tn:n:unter.\-'" “caunter v Compilz I

Filez of type: IHDL Filez [”.v;”.vl;“.vhd;“.vhdl;“.vhn;”.hdl;”.vj Done |

[T Compile selected files together Drefault Options... | Edit Source |

2. View the compiled design units.

a. OnthelLibrary tab, click the’+’ icon next to the work library and you will see two
design units (Figure 3-5). Y ou can also see their types (Modules, Entities, etc.) and
the path to the underlying source files (scroll to the right if necessary).

Figure 3-5. Verilog Modules Compiled into work Library

Workspace ' H A M| | Transcrpt HA
*|Name | Type | =1 ||# - Compiling module test_caunter =
. #
work, Library # Top level modules:
{] counter b odule B test_counter
1] test_counter b odule wlog _-wu:urk wairk {C:/6.0
- . Tutorial/examples/counter. v}
W] ital2000 Library o
: . # -- Compiling module counter
| REEE Library
W] rodelzin_lib Library # Top level modules:
| std Library | H counter
JCN [— _

Librany =l

Load the Design

1. Loadthetest _counter module into the simulator.

a. Enter the following command at the QuestaSim> prompt in the Transcript window:

vsim -vopt args="+acc" test_counter

28 Questa SV/AFV Tutorial, v6.4c

Basic Simulation
Create the Working Design Library

The -voptargs="+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note

D By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

When the design isloaded, you will see a new tab in the Workspace named sim that
displays the hierarchical structure of the design (Figure 3-6). Y ou can navigate
within the hierarchy by clicking on any linewith a’+" (expand) or ’-" (contract)
icon. You will also see atab named Filesthat displays al filesincluded in the
design.

Figure 3-6. Workspace sim Tab Displays Design Hierarchy

W'or I-::S pace

|"|Instanu:e T|Design unik |Design unit bype |'-.-'isi|:|i|it~;.-' |States
B test_counter kesk_counteriFast) Module +acc=<full =
+- g dut counker(fast) Module +acc=<full =
o #INITIAL#30 kesk_counter(fast) Process
o #IMNITIAL#23 kest_counter{fast) Process
o #INITIAL#17 kest_counter{fast) Process

E #yvsim_capacity ¥ Fareign +acc=<none =
o | =4
m Library | gag sim | =i Files | B Memaries |3

2. View design objects in the Objects pane.
a. Open the View menu and select Objects. The command line equivalent is:

Vi ew obj ects

The Objects pane (Figure 3-7) shows the names and current values of dataobjectsin
the current region (selected in the Workspace). Data objects include signals, nets,
registers, constants and variables not declared in a process, generics, parameters.

Questa SV/AFV Tutorial, v6.4c 29

Basic Simulation
Run the Simulation

Figure 3-7. Object Pane Displays Design Objects

Ohjecks e H A x|
Maode

Register Internal

ek Internal

Register Internal

1| | *

Y ou may open other windows and panes with the View menu or with the view
command. See Navigating the Interface.

Run the Simulation

Now you will open the Wave window, add signals to it, then run the simulation.

1. Open the Wave debugging window.
a. Enter view wave at the command line.
Y ou can also use the View > Wave menu selection to open a Wave window.

The Wave window is one of several windows available for debugging. To seealist
of the other debugging windows, select the View menu. Y ou may need to move or
resize the windows to your liking. Window panes within the Main window can be
zoomed to occupy the entire Main window or undocked to stand alone. For details,
see Navigating the Interface.

2. Add signals to the Wave window.
a. Inthe Workspace pane, select the sim tab.
b. Right-click test_counter to open a popup context menu.
c. Select Add > ToWave > All itemsin region (Figure 3-8).
All signalsin the design are added to the Wave window.

30 Questa SV/AFV Tutorial, v6.4c

Basic Simulation
Run the Simulation

Figure 3-8. Using the Popup Menu to Add Signals to Wave Window
H=

Warks pace

|‘l'1 Inskance

'F|Desi-;|n ik

|Design unik bype |'l.l'i5i|:|i|it';.-' |States

++ 1 Wiews Declaration
o Yiew Instantiation

I T
o

I’ # Copy
Find. ..

rounter(fast) Module
Er(fast)
ounter(fast) Process

+acc=<full =
tacc=<full=

Module

T|:| I'.'I'.'IEI"."E }
To Lisk L Al itemskag region and below

ToLog L Al ikems in design
Tao Dakaflow # I

Expand Selected
Collapse Selected
Expand All
Collapse Al

Save List...

Code Coverage k

i | Reload sim
-Iih End Sirmulation
I Li W

| B Memaries

&L

3. Runthe simulation.

a. Click the Runicon in the Main or Wave window toolbar.

The simulation runs for 100 ns (the default simulation length) and waves are

drawn in the Wave window.

b. Enter run 500 at the VSIM> prompt in the Main window.

The simulation advances another 500 ns for atotal of 600 ns (Figure 3-9).

Questa SV/AFV Tutorial, v6.4c

31

Basic Simulation
Set Breakpoints and Step through the Source

Figure 3-9. Waves Drawn in Wave Window

m wave - defaulk

IESEEEEEERIERERISEEEREERE!

c. Click the Run -All icon on the Main or Wave window toolbar.

The simulation continues running until you execute a break command or it
hits a statement in your code (e.g., a Verilog $stop statement) that halts the
simulation.

d. Click the Break icon. @ The simulation stops running.

Set Breakpoints and Step through the Source

Next you will take a brief look at one interactive debugging feature of the QuestaSim
environment. Y ou will set abreakpoint in the Source window, run the simulation, and then step
through the design under test. Breakpoints can be set only on lines with red line numbers.

1. Open counter.v in the Source window.
a. Select the Filestab in the Main window Workspace.
b. Click the + sign next to the sim filename to see the contents of vaim.wif dataset.

c. Double-click counter.v (or counter.vhd if you are ssmulating the VHDL files) to
open it in the Source window.

2. Set abreakpoint on line 36 of counter.v (or, line 39 of counter.vhd for VHDL).
a. Scrall to line 36 and click in the BP (breakpoint) column next to the line number.

A red ball appearsin the line number column at line number 36 (Figure 3-10),
indicating that a breakpoint has been set.

32 Questa SV/AFV Tutorial, v6.4c

Basic Simulation
Set Breakpoints and Step through the Source

Figure 3-10. Setting Breakpoint in Source Window

m C I Tutorialfexarnples fiukorialsfverilogbasicSimulation/counter v

Ln# =
27 for (i = 4'b0; ((carry == 4'h1l)] &£& (1 <= 71);: i =i+ 4'hi

28 begin

=29 increment[i] = val[i] * carry:

a0 carry = val[i] & carrvy:

31 end

32 end

33 endfunction

34

35 alwvays [[(posedge clk or posedge reset)

el | if [(reset)

a7 count = #tpd_reset_t-:u_c-:uunt &' hoo;

35 else

39 count <= #tpd_n:lk_t-:u_c-:uunt inerement (count) ;

40 |

< | »|

Mwave |h] counter . | ﬂ_?'|

3. Disable, enable, and delete the breakpoint.
a. Click thered ball to disable the breakpoint. It will become a black ball.
b. Click the black ball again to re-enable the breakpoint. It will become ared ball.
c. Click thered ball with your right mouse button and select Remove Breakpoint 36.

d. Click intheline number column next to line number 36 again to re-create the
breakpoint.

4. Restart the ssmulation.

a. Click the Restart icon to reload the design elements and reset the simulation

time to zero.

The Restart dialog that appears gives you options on what to retain during
the restart (Figure 3-11).

Questa SV/AFV Tutorial, v6.4c 33

Basic Simulation
Set Breakpoints and Step through the Source

Figure 3-11. Setting Restart Functions
restort P

Keep:

¥ List Format

W awe Farmat

Breakpoints

Logged Signals

<

Wirkual Definitions
Assertions
Cover Direckives

ATY Formak

<] < < <K AR

...............................

i Restart Cancel |

b. Click the Restart button in the Restart dialog.

c. Click the Run-All icon.

The simulation runs until the breakpoint is hit. When the simulation hits the
breakpoint, it stops running, highlights the line with ablue arrow in the
Source view (Figure 3-12), and issues a Break message in the Transcript pane.

Figure 3-12. Blue Arrow Indicates Where Simulation Stopped.

m C:Tutorialfexamples/tutarialsverilogfbasicSimul ationfcounter .+

BF | 1n # -
28 begin
29 increment[i] = wal[i] * carry:
30 carry = wval[i] & carry;
31 end
32 end
33 endfunction
34
35 always [(posedge clk or posedge reset)

@ soEp if [reset)
37 count = #tpd_reset_tc_cuunt S'hO0;
35 else
39 count <= #tpd clk to count increment (count); LI

Kl [
M wave | k] counter.y I 43

When abreakpoint is reached, typically you want to know one or more signal
values. Y ou have severa options for checking values:

* |ook at the values shown in the Objects window (Figure 3-13).

34 Questa SV/AFV Tutorial, v6.4c

Basic Simulation
Navigating the Interface

Figure 3-13. Values Shown in Objects Window
Objects L H A M

tpd_reset_to count 3 Pararmeter Inkermal

tpd_clk_to_c 2 Parameter Intemal

coLint I Reqg [t
clk. (I et Ir

rezet St M et In

» set your mouse pointer over avariable in the Source window and a yellow box
will appear with the variable name and the value of that variable at the time of
the selected cursor in the Wave window

* highlight asignal, parameter, or variable in the Source window, right-click it,
and select Examine from the pop-up menu to display the variable and its current
value in a Source Examine window (Figure 3-14)

Figure 3-14. Parameter Name and Value in Source Examine Window

x

ftest counter/Sdutstpd reset to_ count
|3

o]

» usethe examine command at the VSIM> prompt to output a variable value to
the Main window Transcript (i.e., exani ne count)

5. Try out the step commands.

a. Click the Step icon on the Main window toolbar. -
i

This single-steps the debugger.

Experiment on your own. Set and clear breakpoints and use the Step, Step Over, and
Continue Run commands until you feel comfortable with their operation.

Navigating the Interface

The Main window is composed of a number of "panes" and sub-windows that display various
types of information about your design, simulation, or debugging session. Y ou can also access
other tools from the Main window that display in stand-alone windows (e.g., the Dataflow
window).

Questa SV/AFV Tutorial, v6.4c 35

Basic Simulation
Navigating the Interface

Figure 3-15. The Main Window

File Edit ‘iew Format Compile Simolate Add Tools indow Help

EREBEDIAER|| LAY || eRAH

I}
S 1]
counter ‘ v -
b | DO U
o HIMPLICITWI... test_counter 0oat... Met " [eoTen

o HIMPLICIT MW test_counter

3 inbtspenne

o HIMITIALHZ0 test_counter

| |

Tranzcript
WS 8

Transcript I

I|N|:|w: 600 ns Delta: 2 |5im:x‘test_c:|:|unter I

The following table describes some of the key elements of the Main window.

Table 3-1. The Main Window

Window/pane Description

Workspace This pane comprises multiple tabs that contain
various sorts of information about the current
project or design. Once adesign is|loaded,
additional tabswill appear. Refer to the
section Workspace in the User’s Manual for
more information.

Transcript The Transcript pane provides acommand-line
interface and serves as an activity log
including status and error messages. Refer to
the section Transcript Window in the User’s
Manual for more information.

36 Questa SV/AFV Tutorial, v6.4c

Basic Simulation
Navigating the Interface

Table 3-1. The Main Window
Window/pane Description

MDI frame The Multiple Document Interface (MDI)
frame holds windows for which there can be
multiple instances. These include Source
editor windows, Wave windows, and Memory
content windows. Refer to the section
Multiple Document Interface (MDI) Framein
the User’s Manual for more information.

Here are afew important points to keep in mind about the QuestaSim interface:

Windows/panes can be resized, moved, zoomed, undocked, etc. and the changes are
persistent.

Y ou have a number of options for re-sizing, re-positioning, undocking/redocking, and
generally modifying the physical characteristics of windows and panes. When you exit
QuestaSim, the current layout is saved so that it appears the same the next time you
invoke the tool. Refer to the Main Window section in the User’s Manual for more
information.

Menus are context sensitive.

The menu items that are available and how certain menu items behave depend on which
pane or window is active. For example, if the ssmtab in the Workspace is active and you
choose Edit from the menu bar, the Clear command is disabled. However, if you click in
the Transcript pane and choose Edit, the Clear command is enabled. The active paneis
denoted by abluetitle bar.

Let ustry afew things.

1. Zoom and undock panes.

a. Click the Zoom/Unzoom icon in the upper right corner of the Workspace pane
(Figure 3-16).

Figure 3-16. Window/Pane Control Icons

Dock/Undock pane

Zoom/Unzoom pane —h-ﬂ ﬂ H«n— Hide pane

The pane fills the entire Main window (Figure 3-17).

Questa SV/AFV Tutorial, v6.4c 37

Basic Simulation
Navigating the Interface

Figure 3-17. zooming in on Workspace Pane

File Edit “iew Format Compile Simulate Add Tools Window Help

|Ds@& s @l AES || SHAA|| o gl &g o %

| # (R oo LR B P R | | & A ee

“workspace

|"||nstanu:e |Design uhit |Design unit lype |Vi$i|:li|it_'r' |
BN test_counter test_counter Module +aco=<full:
+ gl dut courber Module +acc=<full»

o HIMPLICIT MW test_counter Process

o HIMPLICITA.. test_counter Process

o HIMITIALHT? test_counter Process

o HIMITIALHZZ test_counter Process

o HIMITIALE30 test counter Process

I J]l Library | @ £ | £ Files | BH Memories il
|Nuw: 600 ns Delta: 2 |sim:ftest_cuunter y

b. Click the Zoom/Unzoom paneicon in the Workspace.
c. Click the Dock/Undock paneicon in the upper right corner of the Transcript pane.
The Transcript becomes a stand-al one window.
d. Click the Dock/Undock pane icon on the Transcript.
e. Click the Hide paneicon in the Workspace.
f. Select View > Workspace from the menus to re-open the Workspace.
2. Move and resize panes.

a. Hover your mouse pointer in the center of the Transcript title bar, where the two
paralel lines are interrupted by 3 lines of small dots. Thisisthe handle for the pane.
When the cursor is over the pane handle it becomes a four-headed arrow. %,

b. Click and drag the Transcript up and to the right until you see a gray outline on the
right-hand side of the MDI frame.

When you let go of the mouse button, the Transcript is moved and the MDI frame
and Workspace panes shift to the |eft (Figure 3-18).

38 Questa SV/AFV Tutorial, v6.4c

Basic Simulation

Navigating the Interface

Figure 3-18. Panes Rearranged in Main Window

File Edit Y“iew Format Compile Simulate Add Tools Window Help

= WY [Ty Ty - i T e e
J IS B4 B Mg J 28 J ﬁ ﬂ a8 A @ B e | Ay
J A
Trarschipt =—=— H f
% 5000 26 =
53001 26
=B test_counter # E201 27
+F gl dut countber # BA000 27
o HIMPLICIT-WI... test_cou # RO01 27
& HIMPLICIT-wl... test_col #5501 28
- i SE000 28
o BINITIALHIT test_cou # 57001 28
o HIMITIALHEZZ test_con ™ # 57201 23
B HINITIAI#30 test e 7 # 53000 23
: | | _’l # 53001 29
53201 20
I JIL Library | & sim ‘ =3 Files <" m | 1 | fvsin = Mﬂ_ﬂ
|Nuw: 600 ns Delta: 2 |5im:ftest_cuunter

4

c. Select Layout > Reset.

The layout returnsto its original setting.

Tip: Moving panes can get confusing, and you may not always obtain the results you
expect. Practice moving a pane around, watching the gray outline to see what happens
when you drop it in various places. Y our layout will be saved when you exit QuestaSim
and will reappear in the last configuration when you next open QuestaSim. (It's a good
ideato close all panesin the MDI frame at the end of each lesson in this tutorial so only

filesrelevant to each lesson will be displayed.)

Asyou practice, notice that the MDI frame cannot be moved in the same manner as the
panes. It does not have a handlein its header bar.

Selecting Layout > Reset isthe easiest way to rectify an undesired layout.

d. Hover your mouse pointer on the border between two panes so it becomes a double-

headed arrow. +—

e. Click-and-drag left and right or up and down to resize the pane.

f. Select Layout > Reset.

3. Observe context sensitivity of menu commands.

a. Click anywhere in the Workspace.

b. Sdlect the Edit menu and notice that the Clear command is disabled.

Questa SV/AFV Tutorial, v6.4c

39

Basic Simulation
Navigating the Interface

c. Clickinthe Transcript and select Edit > Clear.
This command applies to the Transcript pane but not the Workspace pane.
d. Click on adesign object in the sim tab of the Workspace and select File > Open.
e. Notice that the Open diaog filters to show Log files (* .wif).
f. Now click on afilenamein the Files tab of the Workspace and select File > Open.

Notice that the Open dialog filtersto show HDL file types instead.
Lesson Wrap-Up
This concludes this lesson. Before continuing we need to end the current simulation.

1. Sdect Smulate> End Simulation.

2. Click Yeswhen prompted to confirm that you wish to quit ssmulating.

40 Questa SV/AFV Tutorial, v6.4c

Chapter 4
Projects

Introduction

In this lesson you will practice creating a project.

At aminimum, projects contain awork library and a session state that is stored in a.mpf file. A
project may also consist of:

» HDL sourcefilesor references to source files
» other files such as READMES or other project documentation
* local libraries

» referencesto global libraries

Design Files for this Lesson

The sample design for this lesson is a simple 8-bit, binary up-counter with an associated
testbench. The pathnames are as follows:

Verilog —<install_dir>/examples/tutorial s/verilog/projects/counter.v and tcounter.v
VHDL —<install_dir>/examples/tutorials/'vhdl/projects/counter.vhd and tcounter.vhd

This lesson uses the Verilog files tcounter.v and counter.v. If you have aVHDL license, use
tcounter.vhd and counter.vhd instead.

Related Reading
User's Manual Chapter: Projects.

Create a New Project

1. Create anew directory and copy the design files for this lesson into it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons).

Verilog: Copy counter.v and tcounter.v files from
/<install_dir>/examples/tutorial s/verilog/projects to the new directory.

VHDL: Copy counter.vhd and tcounter.vhd files from
/<install_dir>/examples/tutorial s/'vhdl/projects to the new directory.

Questa SV/AFV Tutorial, v6.4c 41

Projects
Create a New Project

2. If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a. Typevsim at aUNIX shell prompt or use the QuestaSim icon in Windows.

b. Select File> Change Directory and change to the directory you created in step 1.
3. Create anew project.

a. Select File> New > Project (Main window) from the menu bar.

This opens the Create Project dialog where you can enter a Project Name, Project
Location (i.e., directory), and Default Library Name (Figure 4-1). Y ou can also
reference library settings from a selected .ini file or copy them directly into the
project. The default library is where compiled design units will reside.

b. Typetest inthe Project Namefield.

c. Click the Browse button for the Project Location field to select a directory where the
project file will be stored.

d. Leavethe Default Library Name set to work.
e. Click OK.

Figure 4-1. Create Project Dialog - Project Lab

Create Projeck El

— Project Mame
|test

— Project Location
|E: /Tutonial/examples/projects Browse. ..

— Default Libram Mame
|wu:|rk

— Copy Settings From

|a’mndelsim.ini Browse...

% Copy Library Mappings © Reference Libran Mappings

Ok | I:ance||

Add Objects to the Project

Once you click OK to accept the new project settings, you will see a blank Project tab in the
Workspace area of the Main window and the Add items to the Project dialog will appear
(Figure 4-2). From thisdialog you can create anew design file, add an existing file, add afolder
for organization purposes, or create a simulation configuration (discussed below).

42 Questa SV/AFV Tutorial, v6.4c

Projects
Create a New Project

Figure 4-2. Adding New Items to a Project
£

— Click an the icon to add itemsz of that lpe:——

]]

Create Mew File Add Ezizting File
Create Simulation Create Mew Folder

Cloze |

1. Addtwo existing files.
a. Click Add Existing File.

This opensthe Add fileto Project dialog (Figure 4-3). Thisdialog lets you browse to
find files, specify thefile type, specify afolder to which the file will be added, and
identify whether to leave the filein its current location or to copy it to the project

directory.
Figure 4-3. Add file to Project Dialog
Add file to Project x|
— File Mame
I-:u:uunter.v tcounter.y Browse... |
— Addfie aztope——— Falder
| default R ’;riilng files b
¥ Feference from curent location © Copy to project directary
Ok, I Cancel I

b. Click the Browse button for the File Name field. This opens the “ Select filesto add
to project” dialog and displays the contents of the current directory.

c. Verilog: Select counter.v and tcounter.v and click Open.
VHDL: Select counter.vhd and tcounter.vhd and click Open.

This closes the “ Select files to add to project” dialog and displays the selected files
inthe “Add fileto Project” dialog (Figure 4-3).

d. Click OK to add the files to the project.

Questa SV/AFV Tutorial, v6.4c 43

Projects

Create a New Project

e. Click Close to dismissthe Add itemsto the Project dialog.

Y ou should now see two files listed in the Project tab of the Workspace pane
(Figure 4-4). Question mark icons (?) in the Status column indicate that the file has
not been compiled or that the source file has changed since the last successful
compile. The other columns identify file type (e.g., Verilog or VHDL), compilation
order, and modified date.

Figure 4-4. Newly Added Project Files Display a “?” for Status

'l"| M ame |Status | Type ||:Ir|:|er |M|:u:|ifieu:| |
counter, v ? Yerlog 1 10/26/06 084753 P
toounter. ? Verlog 0 10/26406 034758 P

JIL Library | ﬂil

Changing Compile Order (VHDL)

By default QuestaSim performs default binding of VHDL designs when you load the design
with vsim. However, you can elect to perform default binding at compile time. (For details,
refer to the section Default Binding in the User’s Manual.) If you elect to do default binding at
compile, then the compile order isimportant. Follow these steps to change compilation order
within a project.

1. Change the compile order.

a. Select Compile > Compile Order.

This opens the Compile Order dialog box.

. Click the Auto Gener ate button.

QuestaSim "determines’ the compile order by making multiple passes over thefiles.
It starts compiling from the top; if afile fails to compile due to dependencies, it
moves that file to the bottom and then recompiles it after compiling the rest of the
files. It continues in this manner until al files compile successfully or until afile(s)
can't be compiled for reasons other than dependency.

Alternatively, you can select afile and use the Move Up and Move Down buttons to
put the files in the correct order (Figure 4-5).

44

Questa SV/AFV Tutorial, v6.4c

Projects
Create a New Project

Figure 4-5. Compile Order Dialog

Compile Drder x|

——iCurrent Order

tcounter,y il

=
counker v

Move up/down buttons ——

[T [

Auko Generate| Ok | Can-:e||

c. Click OK to close the Compile Order dialog.

Compile the Design
1. Compilethefiles.

a. Right-click either counter.v or tcounter.v in the Project tab and select Compile >
Compile All from the pop-up menu.

QuestaSim compiles both files and changes the symbol in the Status column to a
green check mark. A check mark means the compile succeeded. If compilefails, the
symbol will beared’X’, and you will see an error message in the Transcript pane.

2. View the design units.
a. Click the Library tab in the workspace (Figure 4-6).
b. Click the"+" icon next to the work library.

Y ou should see two compiled design units, their types (modulesin this case), and the
path to the underlying source files.

Questa SV/AFV Tutorial, v6.4c 45

Projects
Create a New Project

Figure 4-6. Library Tab with Expanded Library

'l"IName |T_I,I|:ue _"an'ath d
= wanrk, Library C:¢/Tutorial/ examples
[counter b odule C:/Tutorial/ examplest
1] test_counter kodule C:¢Tutorial/ examples
-+ av_gtd Library $MODEL_TECH/ Aaw
1d]l witalz2 000 Library $MODEL_TECH/. . Avits
i;{ll ieee Library $MODEL_TECH/. fiee
1;{'1 modelzim_lib Library $MODEL_TECHY . /mo
1;{ll zhd Library $MODEL_TECH/. . /std
1;{'1 ztd_developerzkit Library $MODEL_TECH/. . /2td
1;{‘1 FYNOpEYE Library $MODEL_TECH/. Aepr

ii{ll verilog Library $MODEL_TECH/. . Aver d
< | |

[£¥] Project JIL Library | KL

Load the Design
1. Loadthetest_counter design unit.
a. Enter the following command at the QuestaSim> prompt in the Transcript pane.
vsi m -vopt args="+acc" test_counter

The -voptargs="+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note
D By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

Y ou should see 3 new tabsin the Main window Workspace. The simtab displaysthe
structure of the test_counter design unit (Figure 4-7). The Files tab contains
information about the underlying source files. The Memories tab lists al memories
in the design.

46 Questa SV/AFV Tutorial, v6.4c

Projects
Organizing Projects with Folders

Figure 4-7. Structure Tab for a Loaded Design

Works pace

|"'|Instanu:e ‘F|Design unik |Design unik bype |'u'isi|:ui|ity |
B test_counter kest_counterifast) Module +acc=<full=
+F g dut counter(fask) Module +acc=<full=
o #FIMITIAL#31 test_counterifast) Process
o HIMITIAL#Z23 kest_counter(Fast) Process
o #INITIAL#17 kest_rcounter(Fast]) Process
E #wsim_capacitby# Fareign +acc=<none=

a1 | N

[*¥ Project | MLit‘raW | @sim = Files | B Memaries | EiE

At this point you would typically run the smulation and analyze or debug your
design like you did in the previous lesson. For now, you'll continue working with
the project. However, first you need to end the simulation that started when you
loaded test_counter.

2. End the smulation.
a. Sdect Smulate> End Simulation.

b. Click Yes.

Organizing Projects with Folders

If you have alot of filesto add to a project, you may want to organize them in folders. Y ou can
create folders either before or after adding your files. If you create afolder before adding files,
you can specify in which folder you want afile placed at the time you add the file (see Folder
field in Figure 4-3). If you create afolder after adding files, you edit the file properties to move
it to that folder.

Add Folders

Asshown previously in Figure 4-2, the Add itemsto the Project dialog has an option for adding
folders. If you have aready closed that dialog, you can use a menu command to add afolder.

1. Addanew folder.

a. Right-click inside the Projects tab of the Workspace and select Add to Project >
Folder.

b. TypeDesign Filesin the Folder Namefield (Figure 4-8).

Questa SV/AFV Tutorial, v6.4c 47

Projects
Organizing Projects with Folders

Figure 4-8. Adding New Folder to Project

Add Folder x|

— Folder Mame

IDesign Filez

—Falder Lacatian

|T|:||:u Level II

ak. I Eanu:ell

c. Click OK.
The new Design Files folder is displayed in the Project tab (Figure 4-9).

Figure 4-9. A Folder Within a Project

1'1 N armne |Status |T_|,||:lE |Elr|:|er |I'v1|:u:|ifieu:| |
coLnker. y (Yerlag 1 0603404 07:36:00 P
toounter.w (Verlog 0 06/03,/04 O7:36:26 PM
B Cezign Files Folder

Project | Libram

2. Add asub-folder.
a. Right-click anywhere in the Project tab and select Add to Project > Folder.
b. TypeHDL inthe Folder Namefield (Figure 4-10).

Figure 4-10. Creating Subfolder

Add Folder x|

— Folder Mame

[HOL

—Falder Lacatian

Design Files Iz

|Top Level

ihcel |

c. Click the Folder Location drop-down arrow and select Design Files.
d. Click OK.

A’ +" icon appears next to the Design Files folder in the Project tab (Figure 4-11).

48 Questa SV/AFV Tutorial, v6.4c

Projects
Organizing Projects with Folders

Figure 4-11. A folder with a Sub-folder

'l"IName |Status |T_I,I|:ue ||:Ir|:|er |

counter.y Weilog 1
tcounter.y « Weiog 0

E®miE Design Files Falder

] HDL Folder
< | |
1 [£¥] Project M Library | KiL

e. Click the’+' icon to seethe HDL sub-folder.

Moving Files to Folders

If you don’t place filesinto afolder when you first add the files to the project, you can move
them into afolder using the properties dialog.

1. Move tcounter.v and counter.v to the HDL folder.
a. Select both counter.v and tcounter.v in the Project tab of the Workspace.
b. Right-click either file and select Properties.

This opens the Project Compiler Settings dialog (Figure 4-12), which allows you to
set avariety of options on your design files.

Figure 4-12. Changing File Location via the Project Compiler Settings Dialog

Project Compiler Settings 5[

General] Yerilog] Coverage] ﬂ_ﬂ

— General Seftings

[T Do Mot Compile Compils ta lbran: |W|:|rk

>
Place in Falder: |HOL hd

— File Propertiez

tultiple files selected

ak. I Eancell

c. Click the Place In Folder drop-down arrow and select HDL.
d. Click OK.

Questa SV/AFV Tutorial, v6.4c 49

Projects
Simulation Configurations

The selected files are moved into the HDL folder. Click the’+’ icon next to the HDL
folder to see thefiles.

The files are now marked with a’? in the Status column because you moved the
files. The project no longer knows if the previous compilation is till valid.

Simulation Configurations

A Simulation Configuration associates a design unit(s) and its simulation options. For example,
let’ s say that every time you load tcounter.v you want to set the simulator resolution to
picoseconds (ps) and enable event order hazard checking. Ordinarily, you would have to specify
those options each time you load the design. With a Simulation Configuration, you specify
options for adesign and then save a " configuration” that associates the design and its options.
The configuration is then listed in the Project tab and you can double-click it to load tcounter.v
along with its options.

1. Create anew Simulation Configuration.

a. Right-click in the Projects tab and select Add to Project > Simulation
Configuration from the popup menu.

This opens the Add Simulation Configuration dialog (Figure 4-13). The tabsin this
dialog present amyriad of simulation options. Y ou may want to explore the tabs to
see what is available. Y ou can consult the QuestaSim User’s Manual to get a
description of each option.

50 Questa SV/AFV Tutorial, v6.4c

Projects
Simulation Configurations

Figure 4-13. Simulation Configuration Dialog

Add Simulation Configuration x|

— Simulation Configuration Mame Flace in Folder
|n:|:|unter ’]DL ﬂ Add Folder...
Design | YHDL | Verlog | Libraries | SDF | Others | £
*|Mame IType = |Path =
-Hl work Library work
M _omt Optimized...
1] counter b odule C:/Tutonial/examplestutonialz Aeenlogdprojects
Module C:/Tutorialexamplestutonials Avenilogs projects
1,4]1 wv_std Library $MODEL_TECH/. fsv_std
1,{[[wital2000 Library FMODEL_TECH/. Avital2000 —
=l ieee Library $MODEL_TECH/. fieee
1’m modelzim_lib Librany $MODEL_TECH/.. /modelzim_lib
il atd Lihrars #MONFL TECH/ Astd |
4| | i
Deszign Unit(z] Resolution
’Eu:urk.test_cnunter ’; -l
Optirization
’T- Enable optimization Optimization Dptiu:uns...|
Save | Cancel |

=)

Type counter in the Simulation Configuration Name field.

Select HDL from the Place in Folder drop-down.

e o

Click the '+ icon next to the work library and select test_counter.

e. Click the Resolution drop-down and select ps.

f. Uncheck the Enable optimization selection box.

For Verilog, click the Verilog tab and check Enable hazard checking (-hazar ds).
Click Save.

The Project tab now shows a Simulation Configuration named counter in the HDL
folder (Figure 4-14).

Questa SV/AFV Tutorial, v6.4c 51

Projects
Simulation Configurations

Figure 4-14. A Simulation Configuration in the Project Tab

1'1 MName | Status | Trpe | Order | Modified ||
:,-[;| Dresign Files Falder
- HOL Folder

coLnker. ? Yerlog 1 041405 07:54:31 PM
tcounter. v ? Yerlog 0 041406 07:54:32 PM

M Counber Sirnulation

M Libram | ﬂil

2. Load the Simulation Configuration.
a. Double-click the counter Simulation Configuration in the Project tab.

In the Transcript pane of the Main window, the vsim (the QuestaSim simulator)
invocation shows the -hazards and -t ps switches (Figure 4-15). These are the
command-line equivalents of the options you specified in the Simulate dialog.

Figure 4-15. Transcript Shows Options for Simulation Configurations

Transcnpt -

#t Compile of tcounter v was successhul.

Compile of counter.v was successful

B 2 compiles, U faled with no errors.
vaim -hazards -t ps work.test_counter
wzim -hazards -t ps work test_counter

Cading wWork. Test_counter

#t Loading work. counter C_Dm mand
Line
VSIM 5> Switches

Lesson Wrap-Up

This concludes this lesson. Before continuing you need to end the current simulation and close
the current project.

1. Select Simulate > End Simulation. Click Yes.

2. Select the Project tab in the Main window Workspace.

3. Right-click in this tab to open a popup menu and select Close Proj ect.
4. Click OK.

52 Questa SV/AFV Tutorial, v6.4c

Projects
Simulation Configurations

If you do not close the project, it will open automatically the next time you start
QuestaSim.

Questa SV/AFV Tutorial, v6.4c 53

Projects
Simulation Configurations

54 Questa SV/AFV Tutorial, v6.4c

Chapter 5
Working With Multiple Libraries

Introduction

In this lesson you will practice working with multiple libraries. Y ou might have multiple
libraries to organize your design, to access | P from athird-party source, or to share common
parts between simulations.

Y ou will start the lesson by creating aresource library that contains the counter design unit.
Next, you will create a project and compile the testbench into it. Finally, you will link to the
library containing the counter and then run the simulation.

Design Files for this Lesson

The sample design for thislesson is asimple 8-hit, binary up-counter with an associated
testbench. The pathnames are as follows:

Verilog —<install_dir>/examples/tutorial s/verilog/libraries/counter.v and tcounter.v
VHDL —<install_dir>/examples/tutorials/vhdl/libraries/counter.vhd and tcounter.vhd

Thislesson usesthe Verilog files tcounter.v and counter.v in the examples. If you haveaVHDL
license, use tcounter.vhd and counter.vhd instead.

Related Reading
User's Manual Chapter: Design Libraries.

Creating the Resource Library

Before creating the resource library, make sure the modelsim.ini in your install directory is
“Read Only.” Thiswill prevent permanent mapping of resource libraries to the master
modelsim.ini file. See Permanently Mapping VHDL Resource Libraries.

1. Create adirectory for the resource library.

Create anew directory called resource_library. Copy counter.v from
<install_dir>/examples/tutorials/verilog/libraries to the new directory.

2. Create adirectory for the testbench.

Questa SV/AFV Tutorial, v6.4c 55

Working With Multiple Libraries
Creating the Resource Library

Create anew directory called testbench that will hold the testbench and project files.
Copy tcounter.v from <install_dir>/examples/tutorials/verilog/librariesto the new
directory.

Y ou are creating two directories in this lesson to mimic the situation where you receive
aresource library from athird-party. As noted earlier, we will link to the resource
library in the first directory later in the lesson.

3. Start QuestaSim and change to the resource_library directory.

If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a. Typevsim at aUNIX shell prompt or use the QuestaSim icon in Windows.
If the Welcome to QuestaSim dialog appears, click Close.

b. Select File> Change Directory and change to the resource_library directory you
created in step 1.

4. Createtheresourcelibrary.
a Select File> New > Library.
b. Typeparts lib inthe Library Name field (Figure 5-1).
Figure 5-1. Creating New Resource Library

Create a New Library i A

—LCreate

% anew library and a logical mapping to it

£ amap to an exizting librany

— Library Mame:
Iparts_lil:l

— Library Phuzical MNarme:

Iparts_IiI:n

0k, | Cancel |

The Library Physical Name field isfilled out automatically.

Once you click OK, QuestaSim creates a directory for thelibrary, listsit in the
Library tab of the Workspace, and modifies the modelsim.ini file to record this new
library for the future.

5. Compile the counter into the resource library.

56 Questa SV/AFV Tutorial, v6.4c

Working With Multiple Libraries
Creating the Project

a. Click the Compile icon on the Main window toolbar. @

b. Select the parts_lib library from the Library list (Figure 5-2).

Figure 5-2. Compiling into the Resource Library
Librane: Iparts_lil:u j

Look ir: I =) resource_library j = £ Ef-

I% parts_lib

File name: Icnunter.v Compile I
Filez of type: IHDL Files [".v;".'-.fl,'“.vhd;".vhdl;“.vhn;“.hdl;“.vj Daone |

[T Compile selected files together Default Options... | Edit Source |

c. Double-click counter.v to compileit.
d. Click Done.

Y ou now have aresource library containing a compiled version of the counter
design unit.

6. Change to the testbench directory.

a. Select File > Change Directory and change to the testbench directory you created
instep 2.

Creating the Project

Now you will create a project that contains tcounter.v, the counter’ s testbench.

1. Createthe project.
a. Select File> New > Project.
b. Typecounter inthe Project Namefield.

c. Do not change the Project Location field or the Default Library Name field. (The
default library name iswork.)

Questa SV/AFV Tutorial, v6.4c 57

Working With Multiple Libraries
Linking to the Resource Library

d. Make sure“Copy Library Mappings’ is selected. The default modelsim.ini file will
be used.

e. Click OK.
2. Add the testbench to the project.
a. Click Add Existing Filein the Add items to the Project dial og.

b. Click the Browse button and select tcounter.v in the “ Select files to add to project”
dialog.

c. Click Open.
d. Click OK.
e. Click Close to dismissthe “Add itemsto the Project” dialog.
The tcounter.v fileislisted in the Project tab of the Main window.
3. Compile the testbench.
a. Right-click tcounter.v and select Compile > Compile Selected.

Linking to the Resource Library

To wrap up this part of the lesson, you will link to the parts lib library you created earlier. But
first, try smulating the testbench without the link and see what happens.

QuestaSim responds differently for Verilog and VHDL in this situation.

Verilog
1. Simulate aVerilog design with amissing resource library.
a. Enter the following command at the QuestaSim> prompt in the Transcript pane.

vsim -vopt args="+acc" test_counter

The -voptargs="+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note
D By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

The Main window Transcript reports an error loading the design because the counter
moduleis not defined.

58 Questa SV/AFV Tutorial, v6.4c

Working With Multiple Libraries
Linking to the Resource Library

VHDL
1. Simulate aVHDL design with amissing resource library.
a. Enter the following command at the QuestaSim> prompt in the Transcript pane.

vsi m -vopt ar gs="+acc" test_counter

The -voptargs="+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note
D By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

The Main window Transcript reports awarning (Figure 5-3). When you see a
message that contains text like "Warning: (vsim-3473)", you can view more detail
by using the verror command.

Figure 5-3. VHDL Simulation Warning Reported in Main Window

Transcipt —07080 —————————————————————————————
M=2zB&E: B M
wsim -voptargs=Y'"+acch” test_counter d

= Mote: [vaim-3812) Design iz being optimized. ..

= Warning: [1] [vopt-3473] Component instance "dut : counter iz not bound.

Loading C:50uestaSim_E. 2e_Betahwin32d,. /std.standard

Loading wirk. test_counteraniy]

B = Warning: [vaim-3473] Component ingtance "dut : counter'’ iz not bound.

Time: Ong lteration: 0 Region: Aest_counter File: C:AT utonal/examples Autonalzvhdl/libranestestbench/toounter. vhd

WSIM 16> j
kIE

F-1 Transcript

b. Typeverror 3473 at the VSIM> prompt.

The expanded error message tells you that a component ('dut’ in this case) has not
been explicitly bound and no default binding can be found.

c. Typequit -sim to quit the simulation.
The process for linking to aresource library differs between Verilog and VHDL. If you are
using Verilog, follow the stepsin Linking in Verilog. If you are using VHDL, follow the steps
in Linking in VHDL one page later.
Linking in Verilog
Linking in Verilog requires that you specify a"search library" when you invoke the ssmulator.

1. Specify asearch library during simulation.

Questa SV/AFV Tutorial, v6.4c 59

Working With Multiple Libraries
Linking to the Resource Library

Click the Simulate icon on the Main window toolbar. %

a
b. Click the’+’ icon next to the work library and select test_counter.

o

Uncheck the Enable optimization selection box.
d. Click theLibrariestab.

e. Click the Add button next to the Search Librariesfield and browseto parts libinthe
resource_library directory you created earlier in the lesson.

f. Click OK.
The dialog should have parts lib listed in the Search Librariesfield (Figure 5-4).
g. Click OK.
The design loads without errors.
Figure 5-4. Specifying a Search Library in the Simulate Dialog
o X

Design | VHDL | Verlog Libraries] SDF | Others | e

Start Simulation

— Search Libraries [L]

C: /modeltech/examplez/rezource_library/parts_lib Add
kodify..

Delete

— Search Libraries First [-Lf]

Add
hdodify..

FEE EEE

Delete

k. Cancel

Linking in VHDL

Tolink to aresource library in VHDL, you have to create alogical mapping to the physical
library and then add LIBRARY and USE statements to the source file.

1. Create alogical mapping to parts lib.

60 Questa SV/AFV Tutorial, v6.4c

Working With Multiple Libraries
Linking to the Resource Library

Select File> New > Library.

T o

In the Create aNew Library dialog, select a map to an existing library.
Type parts_lib in the Library Name field.

o

d. Click Browseto open the Browse for Folder dialog and browse to parts lib in the
resource_library directory you created earlier in the lesson.

e. Click OK to select the library and close the Select Library dialog.

f. TheCreateaNew Library dialog should look similar to the one shown in Figure 5-5.
Click OK to close the dialog.

Figure 5-5. Mapping to the parts_lib Library

Create a New Library x|

— LCreate

" anew library and a logical mapping to it

¥ amap to an existing librany

— Library Mame:

Iparts_lil:u

— Libramy Mapsz to:

II::.-’TutDriaI.n’resnurce library/partz_lib 1' Eru:uwse...l

OF. I Eancell

2. Add LIBRARY and USE statements to tcounter.vhd.
a. IntheLibrary tab of the Main window, click the’+’ icon next to the work library.
b. Right-click test_counter in the work library and select Edit.
c. Thisopensthefilein the Source window.
d. Right-click in the Source window and uncheck Read Only.
e. Add these two linesto the top of thefile:

LI BRARY parts_lib;
USE parts_lib. ALL;

The testbench source code should now look similar to that shown in Figure 5-6.

f. Sdlect File> Save.

Questa SV/AFV Tutorial, v6.4c 61

Working With Multiple Libraries
Permanently Mapping VHDL Resource Libraries

Figure 5-6. Adding LIBRARY and USE Statements to the Testbench

m LC: /modeltech/examples/testbench/tcounter vhd =

3 R

4 -— All Rights Reserved.

5 —_—

G —— THIEZ WoORE CONTATNZ TREADE SECEET AND PROPRETE

7 -— MENTOER GRAPHICS CORPOREATICHN OR ITEZ LICENEOR

B N

9

10 LIERARY parts lik;

11 USE parts lik.ALL;

12 |

13 entity test counter is

14 PORT { <ount : BUFFER bit wvector (8 downto j

| | -

] H] teounter. vhd * I EIE|

Recompile and simulate.

a. Inthe Project tab of the Workspace, right-click tcounter. vhd and select Compile >
Compile Selected.

b. Enter the following command at the QuestaSim> prompt in the Transcript pane.

vsim -vopt args="+acc" test_counter

c. Thedesign loads without errors.

Permanently Mapping VHDL Resource Libraries

If you reference particular VHDL resource librariesin every VHDL project or smulation, you
may want to permanently map the libraries. Doing this requires that you edit the master
modelsim.ini file in the installation directory. Though you won't actually practiceit in this
tutorial, here are the steps for editing the file:

1

L ocate the modelsim.ini file in the QuestaSim installation directory
(<install_dir>/questasim/modelsim.ini).

IMPORTANT - Make a backup copy of thefile.
Change the file attributes of modelsim.ini so it isno longer "read-only."
Open the file and enter your library mappingsin the [Library] section. For example:

parts lib = C/libraries/parts_lib

62

Questa SV/AFV Tutorial, v6.4c

Working With Multiple Libraries
Permanently Mapping VHDL Resource Libraries

5. Savethefile.
6. Changethefile attributes so the file is "read-only" again.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current ssmulation and close
the project.

1. Select Simulate > End Simulation. Click Yes.
2. Select the Project tab of the Main window Workspace.
3. Select File> Close. Click OK.

Questa SV/AFV Tutorial, v6.4c 63

Working With Multiple Libraries
Permanently Mapping VHDL Resource Libraries

64 Questa SV/AFV Tutorial, v6.4c

Chapter 6
Simulating Designs With SystemC

Introduction

QuestaSim treats SystemC as just another design language. With only afew exceptionsin the
current release, you can simulate and debug your SystemC designs the same way you do HDL
designs.

Note
The functionality described in this lesson requires a systemc license feature in your

QuestaSim license file. Please contact your Mentor Graphics sales representative if you
currently do not have such afeature.

Design Files for this Lesson

There are two sample designs for thislesson. The first isavery basic design, called "basic”,
containing only SystemC code. The second design is aring buffer where the testbench and top-
level chip are implemented in SystemC and the lower-level modules are written in HDL.

The pathnames to the files are as follows:

SystemC —<install_dir>/examples/systemc/sc_basic
SystemC/Verilog —<install_dir>/examples/systemc/sc_viog
SystemC/VHDL —<install_dir>/examples/systemc/sc_vhdl

Thislesson uses the SystemC/Verilog version of the ringbuf design in the examples. If you have
aVHDL license, usethe VHDL version instead. Thereisaso amixed version of the design, but
the instructions here do not account for the slight differencesin that version.

Related Reading
User’'s Manual Chapters: SystemC Simulation, Mixed-Language Simulation, and C Debug.

Reference Manual command: sccom.

Questa SV/AFV Tutorial, v6.4c 65

Simulating Designs With SystemC
Setting up the Environment

Setting up the Environment

SystemC is alicensed feature. Y ou need the systemc license feature in your QuestaSim license
file to simulate SystemC designs. Please contact your Mentor Graphics sales representatives if
you currently do not have such afeature.

The table below shows the supported operating systems for SystemC and the corresponding
required versions of a C compiler.

Table 6-1. Supported Operating Systems for SystemC

Platform Supported compiler versions

RedHat Linux 7.2 and 7.3 gcc 3.2.3,gcc4.0.2

RedHat Linux Enterprise version

2.1

AMDG64 / SUSE Linux Enterprise | gcc 4.0.2

Server 9.0, 9.1, 10 or Red Hat VCO islinux (32-bit binary)

Enterprise Linux 3, 4 VCO islinux_x86 64 (64-bit binary)

Solaris 8, 9, 10 gcc 3.3

Windows 2000 and XP Minimalist GNU for Windows
(MinGW) gcc 3.3.1

See SystemC simulation in the QuestaSm User’s Manual for further details.

Preparing an OSCI SystemC design

For an OpenSystemC Initiative (OSCI) compliant SystemC design to run on QuestaSim, you
must first:

* Replace sc_main() with an SC_MODULE, potentially adding a process to contain any
testbench code

* Replace sc_start() by using the run command in the GUI
* Removecallsto sc_initialize()
» Export the top level SystemC design unit(s) using the SC_ MODULE_EXPORT macro

In order to maintain portability between OSCI and QuestaSim simulations, we recommend that
you preservethe original code by using #ifdef to add the QuestaSim-specific information. When
the design is analyzed, sccom recognizesthe MTI_SY STEMC preprocessing directive and
handles the code appropriately.

For more information on these modifications, refer to Modifying SystemC Source Code in the
User’'s Manual.

66 Questa SV/AFV Tutorial, v6.4c

Simulating Designs With SystemC
Preparing an OSCI SystemC design

1. Create anew directory and copy thetutorial filesinto it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory, then copy all filesfrom
<install_dir>/examples/systemc/sc_basic into the new directory.

2. Start QuestaSim and change to the exercise directory.

If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a. Typevsim at aUNIX shell prompt or use the QuestaSim icon in Windows.
If the Welcome to QuestaSim dialog appears, click Close.
b. Select File> Change Directory and change to the directory you created in step 1.

3. Useatext editor to view and edit the basic_orig.cpp file. To use QuestaSim'’ s editor,
from the Main Menu select File > Open. Change the files of type to C/C++ filesthen
double-click basic_orig.cpp.

a. Usingthe#ifdef MTI_SYSTEM C preprocessor directive, add the
SC_MODULE_EXPORT (top); to the design asshown in Figure 6-1. (Theleft side
of Figure 6-1 isthe original code; the right side is the modified code.) Close the
preprocessing directive with #else.

The original code in the .cpp file follows directly after #else. End that section of the
file with #endif.

b. Savethefile asbasic.cpp.

Questa SV/AFV Tutorial, v6.4c 67

Simulating Designs With SystemC
Preparing an OSCI SystemC design

Figure 6-1. SystemC Code Before and After Modifications

9 # bazic_orig.cpp (Dr‘iginaL;I 9 # basic.cpp (modified fiLE:ﬂ
10 1@
11 #include "basic.h" 11 #include "bhasic.h"
12 12
13 1int sc_main(int, char#*#[]) 13 Hifdet MTI_SYSTEMC
14 A 14
15 zc_clock clk; 15 SC_MODULE_EXPORTC(topd; J
15 16
17 mod_a at "a" 1; _I 17 Helse
18 a.clkl clk 1; 18
13 19 int =c_mainft int, char*[] 2
2@ sc_ilnitializel); 28 A
21 21 sc_clock clk;
22 return @; 27
23 0F 23 mod_a at "a'" 1;
24 24 a.clke clk 3;
25
26 zc_initializei);
27
28 return @;
29 ¥
3@
31 Hendif
- 2 -
a | v 4i | W

A correctly modified copy of the basic.cpp is aso availablein the sc_basic/gold
directory.

4. Edit the basic_orig.h header file as shown in Figure 6-2.

a. Add aQuestaSim specific SC_MODULE (top) as shown in lines 52 through 65 of
Figure 6-2.

The declarations that were in sc_main are placed here in the header file, in
SC_MODULE (top). This creates atop level module above mod_a, which allows
the tool’ s automatic name binding feature to properly associate the primitive
channels with their names.

68 Questa SV/AFV Tutorial, v6.4c

Simulating Designs With SystemC
Preparing an OSCI SystemC design

Figure 6-2. Editing the SystemC Header File.

3
1@
11
12
13
14
15
16
17
12
13

& haszic.h (modified header filel

#ifndef INCLUDED_BASIC
#define INCLUDED_BASIC

#include "swstemc.h"

SC_MODULEC mod_a 3
{

sc_in_clk clk;

wold main_action_method()
i

cout << zimcontext()->delta_count()

<4 " main_action_method called" << endl;

¥

wold main_action_thread()
i
whilet true 2 £
cout << zimcontext()->delta_count()

<4< " main_action_thread called" << endl;

wait () ;
H

wold main_action_cthread()
i
while(true 2 £
cout << zimcontext()->delta_count()
<4 " main_action_cthread called”
wait () ;

¥

SC_CTORC mod_a 2

{
SC_METHODC main_action_method 1;
SC_THREADC main_action_thread 1;
SC_CTHREADC main_action_cthread, clk.pos()

b

#Hifdef MTI_SYSTEMC
SC_MODULE Ctop?
i
sc_clock clk;
mod_a a;

SC_CTOR(topl
clki"clk", 200, @.5, B.@, fal=el,
ar"a"l
{
a.clki clk 2;
+
¥
#Hendif

b

=

<4 endl;

Questa SV/AFV Tutorial, v6.4c

69

Simulating Designs With SystemC
Compiling a SystemC-only Design

b. Savethefileasbasic.h.

A correctly modified copy of the basic.h is also availablein the sc_basic/gold
directory.

Y ou have now made all the edits that are required for preparing the design for compilation.

Compiling a SystemC-only Design

With the edits complete, you are ready to compile the design. Designs that contain only
SystemC code are compiled with sccom.

1. Settheworking library.
a. Typevlib work in the QuestaSim Transcript window to create the working library.
2. Compileand link all SystemC files.
a. Typesccom -g basic.cpp at the QuestaSim> prompt.
The -g argument compiles the design for debug.

b. Type sccom -link at the QuestaSim> prompt to perform the final link on the
SystemC objects.

Y ou have successfully compiled and linked the design. The successful compilation verifies that
all the necessary file modifications have been entered correctly.

In the next exercise you will compile and load a design that includes both SystemC and HDL
code.

Mixed SystemC and HDL Example

In this next example, you have a SystemC testbench that instantiates an HDL module. In order
for the SystemC testbench to interface properly with the HDL module, you must create a stub
module, aforeign module declaration. Y ou will use the scgenmod utility to create the foreign
module declaration. Finally, you will link the created C object files using sccom -link.

1. Create anew exercise directory and copy the tutorial filesinto it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory, then copy all filesfrom
<install_dir>/examples/systemc/sc_vlog into the new directory.

If you have aVHDL license, copy thefilesin <install _dir>/examples/systemc/sc_vhdl
instead.

2. Start QuestaSim and change to the exercise directory

70 Questa SV/AFV Tutorial, v6.4c

Simulating Designs With SystemC
Mixed SystemC and HDL Example

If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a. Typevsim at acommand shell prompt.
If the Welcome to QuestaSim dialog appears, click Close.
b. Select File> Change Directory and change to the directory you created in step 1.
3. Set theworking library.
a. Typevlib work in the QuestaSim Transcript window to create the working library.
4. Compilethe design.

a Verilog:
Typevlog *.v in the QuestaSim Transcript window to compile all Verilog source
files.

VHDL:
Type vcom -93 *.vhd in the QuestaSim Transcript window to compile all VHDL
source files.

5. Create the foreign module declaration (SystemC stub) for the Verilog module ringbuf.

a. Verilog:
Type scgenmod -map “ scalar=bool” ringbuf > ringbuf.h at the QuestaSim>
prompt.

The -map “ scalar=bool” argument is used to generate boolean scalar port types
inside the foreign module declaration. See scgenmod for more information.

VHDL:
Type scgenmod ringbuf > ringbuf.h at the QuestaSim> prompt.

The output is redirected to the file ringbuf.h (Figure 6-3).

Questa SV/AFV Tutorial, v6.4c 71

Simulating Designs With SystemC
Mixed SystemC and HDL Example

[e I) O SO T I S Y

24

Figure 6-3. The ringbuf.h File.

#ifndef _SCGENMOD_ringhbuf_
#detine _SCGEMMOD_ringbuf_

#Hinclude "systemc.h"

class ringbuf : public sc_foreign_module
{
public:

zc_in<hool > clock;

zc_in<hool? reset;

zc_in<hool > txda;

zc_out<hool > rxda;

zc_out<hool > txc;

zc_out<hool? outstrobe;

ringbuf (zc_module_name nm, const char*® hdl_name,
int num_generics, const char*%® generic_lList)
zc_foreign_moduletnml,
clocki{"clock"),
reset("reset"),
txdai("txda"l,
rwdal"rxda’l,
two ("t ,
outstrobe("outstrobe')
i

elaborate_foreign_modulethdl_name, num_generics, generic_lList);

H
“ringhuf ()
ir

¥

#Hendif

Thetest_ringbuf.h fileisincluded in test_ringbuf.cpp, as shown in Figure 6-4.

Figure 6-4. The test_ringbuf.cpp File

9 ¢ test_ringbuf.cpp

11 #include "test_ringhuf.h"
12 #include <iocstream>

15 SC_MODULE_EXPORT(test_ringhbufl;

6. Compileand link all SystemC files, including the generated ringbuf.h.

a. Typesccom -gtest_ringbuf.cpp at the QuestaSim> prompt.

Thetest_ringbuf.cpp file contains an include statement for

test_ringbuf.h and a

required SC_ MODULE_EXPORT (top) statement, which informs QuestaSim that

the top-level module is SystemC.

72

Questa SV/AFV Tutorial, v6.4c

Simulating Designs With SystemC
Mixed SystemC and HDL Example

b. Typesccom -link at the QuestaSim> prompt to perform the final link on the
SystemC objects.

7. Load the design.
a. Enter the following command at the QuestaSim> prompt in the Transcript pane.
vsim -voptargs="+acc" test_ringbuf

The -voptargs="+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note
D By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

8. If necessary, you may close the Locals, Profile, and Watch panes of the Main window.
Make sure the Objects pane is open and the Process pane is open in “Active’ mode, as
shown in Figure 6-5. To open or close these windows, use the View menu.

Figure 6-5. The test_ringbuf Design
Y =

Wor l‘::j pace

HInstann:e ‘F|Design unik |Design unit bype |'u'isi|:-i|it
B test_ringbuf kest_ringbuf Schodule ; |
+F gl ring_IMST ringbufifast) Module +acc==fullx
o reset_generator test_ringbuf Schethod
o print_restore kest_ringbuf ScMethod
W orink_errar kest_ringbuf ScMethod
wP gererate_data test_ringbuf ScMethod
o compare_data test_ringbuf ScMethod <] | _'*I
+- il clock sC_carelisc_,.. ScHierChannel 4acc=-<full> Process (Active) o e
|g AFwsin_capaciby# Fareign +acc=<none; "IName |T_ﬂ:||3 |
a | N |
JIL Lbrary | &g sim | i Files | B Memoaries LI | |
4 *
Transcripk

Loading work, ringbufifask)
Loading work, contral(Fast)
Loading work, skore(Fast)

Loading work. retrievelFast)

WIIM E1 =

-1 Transcript I

Questa SV/AFV Tutorial, v6.4c 73

Simulating Designs With SystemC
Viewing SystemC Objects in the GUI

Viewing SystemC Objects in the GUI

SystemC objects are denoted in the QuestaSim GUI with agreen’S inthe Library tab and a
green sguare, circle, or diamond icon elsewhere.

1. View Workspace and objects.
a. Click onthe Library tab in the Workspace pane of the Main window.

SystemC objects have agreen’S' next to their names (Figure 6-6).

Figure 6-6. SystemC Objects in the work Library

*|Mame |Type =|Path =

= ik, Library C:/Tutarial/examples/syste
~M _opt Optimized...
) cantral Maodule C:ATutarialexampleshayste
) retrieve Module C:ATutonialvexampleshspste
i) ringbuf Module C:ATutonialvexampleshsyste
] stare Module C:ATutorialvexampleshsyste
5] test_ringbuf Schodule

il{ll av_ztd Library FMMODEL_TECH/ . few_std d

| | -

1 JIL Library | ﬁ ginn | ! Files | B tMemonies | ki

2. Observe window linkages.
a. Click on the sim tab in the Workspace pane of the Main window.
b. Select the clock instance in the sim tab (Figure 6-7).
The Objects window updates to show the associated SystemC or HDL objects.

74 Questa SV/AFV Tutorial, v6.4c

Simulating Designs With SystemC
Viewing SystemC Objects in the GUI

Figure 6-7. SystemC Objects in the sim Tab of the Workspace

Warks, pace

= B4

Chbjects s

'l"IInsI:an-:e TlDesign unik |Design unik bype
=@ test_ringbuf kest_ringbuf ScModule m_mti_neged...{
=+ ‘! ring_IMST ringbuf{fast) Module m_mti_posed. ..
- blocks retrievelfast) Module m_mti_turn_...
Hl retriever retrieveifast) Skatement m_rnti_turr_...
o #A55IG... retrievelfast) Process m_delta
o #ALWA... retrieve(fast) Process m_cur_val
+ gl blockz skore(fast) Module m_negedge_... 5
[+ @l blockl control{Fast) Module o[z e
) reset_generator test_ringbuf ScMethod 7 ge_f...false
g} print_restore kest_ringbuf ScMethod m_start_time
o} print_errar kest_ringbuf ScMethod
) generate_data test_ringbuf ScMethod
) compare_data test_ringbuf ScMethod 5ig
sc_core:sc_clock ScHierZhannel
|g Awsim_capacity ¥ Fareign
.| | o
M Library | &l sm | E Files | B Memaries |3

3. Add objects to the Wave window.

a. Right-click test_ringbuf in the sim tab of the Workspace and select Add > To Wave
> All itemsin region.

Setting Breakpoints and Stepping in the Source Window

Aswith HDL files, you can set breakpoints and step through SystemC files in the Source
window. In the case of SystemC, QuestaSim uses C Debug, an interface to the open-source gdb
debugger. Refer to the C Debug chapter in the User’s Manual for complete details.

1. Before we set a breakpoint, we must disable the Auto Lib Step Out feature, which ison
by default. With Auto Lib Step Out, if you try to step into a standard C++ or SystemC
header file (modeltech/include/systemc), QuestaSim will automatically do a step-out.

a. Select Tools> C Debug > Allow lib step from the Main menus.
2. Set abreakpoint.
a. Double-click test_ringbuf in the sim tab of the Workspace to open the sourcefile.
b. In the Source window:
Verilog: scroll to the area around line 150 of test_ringbuf.h.
VHDL: scroll to the area around line 155 of test_ringbuf.h.

Questa SV/AFV Tutorial, v6.4c 75

Simulating Designs With SystemC
Viewing SystemC Objects in the GUI

Click in the line number column next to the red line number of the line containing
(shown in Figure 6-8) :

Verilog:bool var_dataerror_newal = actual.read()...
VHDL:sc_logic var_dataerror_newal = acutal.read ...
Note

QuestaSim recogni zes that the file contains SystemC code and automatically launches C
Debug. There will be adlight delay while C Debug opens before the breakpoint appears.

Once the debugger is running, QuestaSim places a solid red ball next to the line
number (Figure 6-8).

Figure 6-8. Active Breakpoint in a SystemC File

C:fTutorialfexamples/systemcisc_wlogftest_ringbuf.h
Lm# -
147 S 0n every negedge of the clock, compare actual and expected dat:
145 A
149 inline woid test_ringbuf::compare data()
150 i
151 bool war dataerror newval = actual.readl() ~ lexpected.read() ;
152 dataerror.write (var_ dataerror newval]:
153 == |
154 if [(reset.readi(] == 0]
155 i -

1| |]

Mwave C] kest_ringbuf.h | ﬂil

3. Run and step through the code.

a. Typerun 500 at the VSIM> prompt.

When the simulation hits the breakpoint, it stops running, highlights the line with a
blue arrow in the Source window (Figure 6-9), and issues a message like thisin the
Transcript:

C breakpoint c.1
test _ringbuf::conpare_data (this=0x1f13bc8) at
test _ringbuf. h: <151>

76

Questa SV/AFV Tutorial, v6.4c

Simulating Designs With SystemC
Viewing SystemC Objects in the GUI

Figure 6-9. Simulation Stopped at Breakpoint

E C:fTutorialfexamplesswskemcisc_vlogftest_ringbuf. b
Ln# -
147 A 0n every negedge of the clock, compare actual and expected dat:
145 £
149 inline woid test_ringbuf::compare datal)]
150 i
151@ | bool war datserror newval = actual.read(] ~ lexpected.read() :
152 dataerror.write (var dataerror newval) :
153 == |
154 if [(reset.readi()] == 0]
155 { |

| |]

Mwave | C] test_ringbuf.h | ﬂ_ﬂ

b. Click the Step icon on the toolbar. | 4}

This steps the simulation to the next statement. Because the next statement isa
function call, QuestaSim steps into the function, which isin a separate file —
sc_signal.h (Figure 6-10).

Figure 6-10. Stepping into a Separate File

E C:Questasim_6.4)include)systemcfsc_signal.b
Ln# -
435 F# read the current wvalue
439 wvirtual const boolg read() const
‘HD* | { return mw cur wal:
441 I
g4z AF get a reference to the current walus (for tracing
443 wirtual const hoolé get dats ref(] constc
4334 { sc_deprecated get data ref(); return w_cur wal:
445 J
b
J | B
l Mwave l] test_ringbuf.h [C] sc_signal.h | ﬂ_?'|

c. Click the Continue Run icon in the toolbar. | [£]

The breakpoint in test_ringbuf.h is hit again.

Examining SystemC Objects and Variables

To examine the value of a SystemC object or variable, you can use the examine command or
view the value in the Objects window.

1. View thevalue and type of an sc_signal.

Questa SV/AFV Tutorial, v6.4c 77

Simulating Designs With SystemC
Viewing SystemC Objects in the GUI

a. Enter the show command at the CDBG > prompt to display alist of all design
objects, including their types, in the Transcript.

Inthislist, you'll seethat the type for dataerror is*“boolean” (sc_logic for VHDL)
and counter is“int” (Figure 6-11).

Figure 6-11. Output of show Command

T rarzcript

COBG 14> show
ptupe this
type = class test_ringbuf : public sc_maodule {
public:
shuct go_clock clock;
zc_event reset_deactivation_gvent;
zc_zignal<booly reset;
zc_zighals bool: teda;
zC_gignalbooly reda;
#c_zighal boals ke
zc_zighals bool: outstrobe;
zc_gignal{sc_db:sc_uint<20r > pseudo;
#o_zighalsc_db:sc_uints 20 > starage;
zc_sighals bool: expected;
zC_gignal<booly dataermor;
zc_zighals bool: actual;
ink counter;
ringbuf “ring_IMST:
tezt_ringbuf & operator=[test_ringbuf consté);
test_ringbuf[test_ningbuf congtd);
woid reset_generator]);
void generate_datal];
woid compare_datal];
oid print_error[];
woid print_restore();
tezt_ringbuf(zc_core::zc_module_name):
wvirtual “test_ringbuf();
#1# congt
ptype var_dataermar_newwal
type = bool

HHFEHAFHFEEHETEEERE TS S S

COBG 15

| F-) Transcript

EIE

b. Enter the examine dataerror command at the CDBG > prompt.

The value returned is "true".

2. View the value of a SystemC variable.

a. Enter the examine counter command at the CDBG > prompt to view the value of

thisvariable.

Thevauereturned is"-1".

78

Questa SV/AFV Tutorial, v6.4c

Simulating Designs With SystemC
Viewing SystemC Objects in the GUI

Removing a Breakpoint

1. Return to the Source window for test_ringbuf.h and right-click the red ball in the line

number column. Select Remove Breakpoint from the popup menu.
Click the Continue Run button again.
The simulation runs for 500 ns and waves are drawn in the Wave window (Figure 6-12).

If you are using the VHDL version, you might see warnings in the Main window

transcript. These warnings are related to VHDL value conversion routines and can be
ignored.

Figure 6-12. SystemC Primitive Channels in the Wave Window

L Mo 500 ns

= Cursor 1 0ns

- defaulk

-40 33DD33J33:‘ID33L‘lJJJDJJHJJJJJJJJJDJJJJJJJT_
... | INACTIVE I N T IR,
frue

", false

1

| J3 JC0 I S | KT [2]]

-l Mwave I @test_ringhuf.h l@sc_signal.h]

= I

Lesson Wrap-up

This concludes the lesson. Before continuing we need to quit the C debugger and end the
current simulation.

1
2.

Select Tools > C Debug > Quit C Debug.

Select Smulate > End Simulation. Click Y eswhen prompted to confirm that you wish
to quit simulating.

Questa SV/AFV Tutorial, v6.4c

79

Simulating Designs With SystemC
Viewing SystemC Objects in the GUI

80 Questa SV/AFV Tutorial, v6.4c

Chapter 7
Analyzing Waveforms

Introduction

The Wave window allows you to view the results of your simulation as HDL waveforms and
their values. The Wave window is divided into a number of panes (Figure 7-1). Y ou can resize
the pathnames pane, the values pane, and the waveform pane by clicking and dragging the bar
between any two panes.

Figure 7-1. Panes of the Wave Window

Messages bar

pathnames pane values pane waveform pane
m wave - deFault ;IQIEI

File Edit WieW A&dd Format Tools Window

|DeE| & @02 AT | S | 824 o
4 €= | 2R mnnsillﬂé?'}ﬁl{'?lﬁﬂﬂ
o Tepr e d E I mf o B €| W

+
+

+

+

-
|
Cursar 2 150 ns
4 3K 3 [D |
103 ns to 151 ns Mow: 500 s Delka; 2 i
cursor names pane cursor values pane cursor pane

cursor toolbox

Questa SV/AFV Tutorial, v6.4c 81

Analyzing Waveforms
Loading a Design

Related Reading
User's Manual sections: Wave Window and Recording Simulation Results With Datasets

Loading a Design

For the examplesin this lesson, we have used the design simulated in Basic Simulation.

1. If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a. Typevsim at aUNIX shell prompt or use the QuestaSim icon in Windows.
If the Welcome to QuestaSim dialog appears, click Close.
2. Load the design.

a. Select File > Change Directory and open the directory you created in the “Basic
Simulation” lesson.

The work library should already exist.
b. Enter the following command at the QuestaSim> prompt in the Transcript pane.

vsi m -vopt args="+acc" test_counter

The -voptargs="+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note
By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

QuestaSim loads the design and adds ssm and Files tabs to the Workspace.

Add Objects to the Wave Window

QuestaSim offers several methods for adding objects to the Wave window. In this exercise, you
will try different methods.

1. Add objects from the Objects pane.

a. Select an item in the Objects pane of the Main window, right-click, and then select
Add > ToWave> All itemsin region.

QuestaSim adds several signalsto the Wave window.

2. Undock the Wave window.

82 Questa SV/AFV Tutorial, v6.4c

Analyzing Waveforms
Add Objects to the Wave Window

By default QuestaSim opens Wave windows as atab in the MDI frame of the Main
window. Y ou can change the default via the Preferences dialog (T ools > Edit
Preferences). Refer to the section Simulator GUI Preferences in the User’s Manual for
more information.

a. Click the undock button on the Wave pane (Figure 7-2).

The Wave pane becomes a standal one, un-docked window. Y ou may need to resize
the window.

Figure 7-2. Undocking the Wave Window

undock icon

[T wave - default

3. Add objects using drag-and-drop.

Y ou can drag an object to the Wave window from many other windows and panes (e.g.,
Workspace, Objects, and Locals).

a. Inthe Wave window, select Edit > Select All and then Edit > Delete.

b. Drag aninstance from the simtab of the Main window to the Wave window.
QuestaSim adds the objects for that instance to the Wave window.

c. Drag asignal from the Objects pane to the Wave window.

d. Inthe Wave window, select Edit > Select All and then Edit > Delete.

4. Add objects using acommand.

a. Typeadd wave* at the VSIM> prompt.

QuestaSim adds all objects from the current region.

b. Run the ssimulation for awhile so you can see waveforms.

Questa SV/AFV Tutorial, v6.4c 83

Analyzing Waveforms
Zooming the Waveform Display

Zooming the Waveform Display

Zooming lets you change the display range in the waveform pane. There are numerous methods
for zooming the display.

1. Zoom the display using various techniques.

a Click the Zoom Mode icon on the Wave window toolbar. | 0,

b. Inthewaveform pane, click and drag down and to the right.

Y ou should see blue vertical lines and numbers defining an areato zoom in
(Figure 7-3).

Figure 7-3. Zooming in with the Mouse Pointer
ﬂILﬂFLﬂMLFLFLFLFUiMULFLWW
| [|
EERRIRESEENIRREREEE

LY
—T

L ! .D'. 1 - -
= o In: 102 ris to 240 ris

c. Sdect View > Zoom > Zoom L ast.

The waveform pane returns to the previous display range.

d. Click the Zoom In 2x icon afew times. Cﬂ

e. Inthewaveform pane, click and drag up and to the right.
Y ou should see a blue line and numbers defining an area to zoom out.

f. Sdlect View > Zoom > Zoom Full.

Using Cursors in the Wave Window

Cursors mark simulation time in the Wave window. When QuestaSim first draws the Wave
window, it places one cursor at time zero. Clicking anywhere in the waveform pane brings that
cursor to the mouse location.

Y ou can also add additional cursors; name, lock, and delete cursors; use cursors to measuretime
intervals; and use cursorsto find transitions.

84 Questa SV/AFV Tutorial, v6.4c

Analyzing Waveforms
Using Cursors in the Wave Window

First, dock the Wave window in the Main window by clicking the dock icon. ¥

Working with a Single Cursor
1. Position the cursor by clicking and dragging.

a. Click the Select Mode icon on the Wave window toolbar. 'ﬂ:

b. Click anywherein the waveform pane.

A cursor isinserted at the time where you clicked (Figure 7-4).

Figure 7-4. Working with a Single Cursor in the Wave Window

m wave - defaulk

Cursar 1 319ns

219 ns
4 3 (I 3 (T O]

M Wave I

c. Drag the cursor and observe the value pane.

o | [[CH—T

The signal values change as you move the cursor. Thisis perhaps the easiest way to
examine the value of asignal at a particular time.

d. Inthewaveform pane, drag the cursor to the right of atransition with the mouse
positioned over awaveform.

The cursor "snaps’ to the nearest transition to the left. Cursors "snap” to awaveform
edgeif you click or drag a cursor to within ten pixels of awaveform edge. Y ou can
set the snap distance in the Window Preferences dialog (select Tools > Window
Prefer ences).

e. Inthe cursor pane, drag the cursor to theright of atransition (Figure 7-4).
The cursor doesn’t snap to atransition if you drag in the cursor pane.
2. Renamethe cursor.
a. Right-click "Cursor 1" in the cursor name pane, and select and delete the text.

b. TypeA and press Enter.

Questa SV/AFV Tutorial, v6.4c 85

Analyzing Waveforms
Using Cursors in the Wave Window

The cursor name changesto "A" (Figure 7-5).

Figure 7-5. Renaming a Cursor

m wave - defaulk

& 243 ns

4 3 K 3 KT 0|

| QWEVE I

3. Jump the cursor to the next or previous transition.

o | [[CT—T

a. Click signal count in the pathname pane.

b. Click the Find Next Transition icon on the Wave window toolbar. | =

The cursor jumps to the next transition on the currently selected signal.

c. Click the Find Previous Transition icon on the Wave window toolbar. | |

The cursor jumps to the previous transition on the currently selected signal.

Working with Multiple Cursors
1. Add asecond cursor.
a. Click the Add Cursor icon on the Wave window toolbar.
b. Right-click the name of the new cursor and delete the text.
c. TypeB and press Enter.

d. Drag cursor B and watch the interval measurement change dynamically (Figure 7-6).

86 Questa SV/AFV Tutorial, v6.4c

Analyzing Waveforms
Saving and Reusing the Window Format

Figure 7-6. Interval Measurement Between Two Cursors

m wave - default
=]
+! [ftest_counkerfcount | 00000011
-
B 56 s
1 3 F 8 i >||.
| ﬂ WaYE I 43|

2. Lock cursor B.
a. Right-click cursor B in the cursor pane and select L ock B.

The cursor color changesto red and you can no longer drag the cursor (Figure 7-7).

Figure 7-7. A Locked Cursor in the Wave Window

[T wave - default

Jtest_counter)cllk

400 ns

243 ns

q 3 I v [4] |>||.

| wave I 4|3

3. Delete cursor B.

a. Right-click cursor B and select Delete B.

Saving and Reusing the Window Format

If you close the Wave window, any configurations you made to the window (e.g., signals added,
cursors set, etc.) are discarded. However, you can use the Save Format command to capture the

Questa SV/AFV Tutorial, v6.4c 87

Analyzing Waveforms
Saving and Reusing the Window Format

current Wave window display and signal preferencesto a.do file. Y ou open the .do file later to
recreate the Wave window as it appeared when the file was created.

Format files are design-specific; use them only with the design you were simulating when they
were created.

1. Saveaformat file.
a. Inthe Wave window, select File > Save.

b. Inthe Pathname field of the Save Format dialog, |eave the file name set to wave.do
and click OK.

c. Close the Wave window.
2. Load aformat file.

a. Inthe Main window, select View > Wave.

b. Undock the window.
All signals and cursor(s) that you had set are gone.

c. Inthe Wave window, select File> L oad.

d. Inthe Open Format dialog, select wave.do and click Open.
QuestaSim restores the window to its previous state.

e. Closethe Wave window when you are finished by selecting File > Close Window.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Select Smulate> End Simulation. Click Yes.

88 Questa SV/AFV Tutorial, v6.4c

Chapter 8
Creating Stimulus With Waveform Editor

Introduction

The Waveform Editor creates stimulus for your design viainteractive manipulation of
waveforms. Y ou can then run the simulation with these edited waveforms or export them to a
stimulusfile for later use.

In this lesson you will do the following:

» Load the counter design unit without a testbench

» Create waves viaawizard

» Edit wavesinteractively in the Wave window

» Export the waves to an HDL testbench and extended VCD file
* Runthe simulation

* Re-simulate using the exported testbench and VCD file

Related Reading

User’s Manual Sections. Generating Stimulus with Waveform Editor and Wave Window.

Load a Design Unit

For the examplesin thislesson, we will use part of the design simulated in Basic Simulation.

Note
Y ou can a'so use the Waveform Editor prior to loading a design. Refer to the section

Using Waveform Editor Prior to Loading a Design in the User Manual for more
information.

1. If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a Typevsim at aUNIX shell prompt or use the QuestaSim icon in Windows.
If the Welcome to QuestaSim dialog appears, click Close.
2. Open aWave window.

a. Sdect View > Wave from the Main window menus.

Questa SV/AFV Tutorial, v6.4c 89

Creating Stimulus With Waveform Editor
Create Graphical Stimulus with a Wizard

3. Load the counter design unit.
a. Select File> Change Directory and open the directory you created in Lesson 2.
The work library should already exist.
b. Enter the following command at the QuestaSim> prompt in the Transcript pane.
vsi m -vopt args="+acc" counter

The -voptargs="+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note
D By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

QuestaSim loads the counter design unit and adds sim, Files, and Memories tabs to
the Workspace.

Create Graphical Stimulus with a Wizard

Waveform Editor includes a Create Pattern Wizard that walks you through the process of
creating editable waveforms.

1. Usethe Create Pattern Wizard to create a clock pattern.
a. Inthe Objects pane, right click signal clk and select Create Wave (Figure 8-1).

90 Questa SV/AFV Tutorial, v6.4c

Creating Stimulus With Waveform Editor
Create Graphical Stimulus with a Wizard

Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane
[It|'||-'| ks E

E Value kind

kpd_clk_to_counk z Parameter Internal

tpd_reset ko _counk 3 Parameter Internal

clle i Mek In
Yigww Declar ation Met n

Wiew Memary Cantents Packed Arraw ck

Add

Copy
Find. ..

Insert Breakpoink
Toggle Coverage

Force. ..
MoForce

This opens the Create Pattern Wizard dialog where you specify the type of pattern
(Clock, Repester, etc.) and a start and end time.

b. The default pattern is Clock, which is what we need, so click Next (Figure 8-2).

Figure 8-2. Create Pattern Wizard

Create Pattern Wizard x|

zenerate a waveform For any signal For Select Pattern _

the chosen pattern, . Signial Marne

The allowed patterns are: 2im: foounter folk

Constant & Clock I H !

Eg:'n':gnm ¢ Constant Start Time End Time Time Uit
Repeater " Random IIII looo |ns ﬂ
Counker " Repeater

Select the pattern in the right-hand -

Frame. Counker

-::F‘reviu:uus| Mext = | Cancel |

c. Inthesecond dialog of the wizard, enter 1 for Initial Value. Leave everything else as
isand click Finish (Figure 8-3).

Questa SV/AFV Tutorial, v6.4c 91

Creating Stimulus With Waveform Editor
Create Graphical Stimulus with a Wizard

Figure 8-3. Specifying Clock Pattern Attributes

sim:/counter /clk <Pattern : clock>= x|

— LClock Attributes
Initial % alue

e

Clock Period Time Unit

Specify the Clock Pattern
Attributes.

[100 ln: wd
Dty Cycle
IEEI

4 F'reviu:uusl Firizh I Cancel I

A generated waveform appears in the Wave window (Figure 8-4). Notice the small
red dot on the waveform icon and the prefix "Edit:". These items denote an editable
wave. (Y ou may want to undock the Wave window.)

Figure 8-4. The clk Waveform

[T wawve - default

Tl Cursor 1

| Mwave I EE

2. Create a second wave using the wizard.

a

Right-click signal reset in the Objects pane and select Create Wave from the popup
menu.

Select Constant for the pattern type and click Next.
Enter O for the Value and click Finish.

A second generated waveform appears in the Wave window (Figure 8-5).

92

Questa SV/AFV Tutorial, v6.4c

Creating Stimulus With Waveform Editor
Edit Waveforms in the Wave Window

Figure 8-5. The reset Waveform

m wave - defaulk

Edit Waveforms in the Wave Window

Waveform Editor gives you numerous commands for interactively editing waveforms (e.g.,
invert, mirror, stretch edge, cut, paste, etc.). Y ou can access these commands via the menus,
toolbar buttons, or viakeyboard and mouse shortcuts. Y ou will try out several commandsinthis
part of the exercise.

1. Insert apulseon signal reset.
a. Click the Edit Mode icon in the toolbar. :'I___I
b. Inthe Wave window, click thereset signal so it is selected.

c. Click the Insert Pulseicon in the toolbar. 7J}

Or, in the waveform pane of the Wave window, right-click on the reset signal
waveform and select Wave > Insert Pulse.

d. Inthe Edit Insert Pulse dialog, enter 100 in the Duration field and 100 in the Time
field (Figure 8-6), and click OK.

Figure 8-6. Edit Insert Pulse Dialog

Edit Insert Pulse x|

Signal Mame

| Edit: Acounter/reset

Cruration Time Tirne U nit

100 100 .
EI Ear‘u:ell

Signal reset now goes high from 100 ns to 200 ns (Figure 8-7).

Questa SV/AFV Tutorial, v6.4c 93

Creating Stimulus With Waveform Editor
Edit Waveforms in the Wave Window

Figure 8-7. Signal reset with an Inserted Pulse
m wave - default

g wave I 4|3

2. Stretch an edge on signal clk.

a. Click the signal clk waveform just to the right of the transition at 350 ns. The cursor
should snap to the transition at 350 ns.

b. Right-click that same transition and select Wave > Stretch Edge from the popup
menu.

If the command is dimmed out, the cursor probably isn’t on the edge at 350 ns.

c. Inthe Edit Stretch Edge dialog, enter 50 for Duration, make sure the Time field
shows 350, and then click OK (Figure 8-8).

Figure 8-8. Edit Stretch Edge Dialog

Edit Stretch Edge x|

Signal Mame
| Edit: Acounterdclk

Direction
’75 Forward ¢ Backward

Cruration Time Tirne U nit

|50 | 350 .
EI Ear‘u:ell

The wave edge stretches so it is high from 300 to 400 ns (Figure 8-9).

94 Questa SV/AFV Tutorial, v6.4c

Creating Stimulus With Waveform Editor
Edit Waveforms in the Wave Window

Figure 8-9. Stretching an Edge on the clk Signal

m wave - defaulk

Edit: fcounterclk, gk0 ﬂ

U
Cursor 1350 ns I

p 3 I (T |>||.

g wave I B

Note the difference between stretching and moving an edge — the Stretch command
moves an edge by moving other edges on the waveform (either increasing waveform
duration or deleting edges at the beginning of simulation time); the Move command
moves an edge but does not move other edges on the waveform. Y ou should see in
the Wave window that the waveform for signal clk now extends to 1050 ns.

3. Delete an edge.
a. Click signal clk just to the right of the transition at 400 ns.
The cursor should "snap” to 400 ns.

b. Click the Delete Edgeicon. | ¢~

This opens the Edit Delete Edge dialog. The Timeis already set to 400 ns. Click
OK. The edge is deleted and clk now stays high until 500 ns (Figure 8-10).

Figure 8-10. Deleting an Edge on the clk Signal

m wave - default

0 s
4]

£ wave I 3]

4. Undo and redo an edit.

a. Click the Undo icon.

L%

Questa SV/AFV Tutorial, v6.4c 95

Creating Stimulus With Waveform Editor
Save and Reuse the Wave Commands

The Edit Undo dialog opens, allowing you to select the Undo Count - the number of
past actions to undo. Click OK with the Undo Count set to 1 and the deleted edge at
400 ns reappears.

Click theRedoicon. | ¢x

The edge is deleted again. Y ou can undo and redo any number of editing operations
except extending all waves and changing drive types. Those two edits cannot be
undone.

Save and Reuse the Wave Commands

Y ou can save the commands that QuestaSim used to create the waveforms. Y ou can load this
"format" file at alater time to re-create the waves. In this exercise, we will save the commands,
quit and reload the simulation, and then open the format file.

1. Savethewave commandsto aformat file.

a

Select File > Close in the menu bar and you will be prompted to save the wave
commands.

Click Yes.

Type waveedit.do in the File name field of the Save Commands dialog that opens
and then click Save.

Thissavesa DO file named waveedit.do to the current directory and closesthe Wave
window.

2. Quit and then reload the simulation.

a

b.

In the Main window, select Simulate > End Simulation, and click Y esto confirm
you want to quit simulating.

To reload the simulation, enter the following command at the QuestaSim> prompt.

vsi m -vopt args="+acc" counter

3. Open theformat file.

a
b.

C.

Select View > Wave to open the Wave window.
Select File> Load from the menu bar.
Double-click waveedit.do to open thefile.

The waves you created earlier in the lesson reappear. If waves do not appear, you
probably did not load the counter design unit.

96

Questa SV/AFV Tutorial, v6.4c

Creating Stimulus With Waveform Editor
Exporting the Created Waveforms

Exporting the Created Waveforms

At this point you can run the ssmulation or you can export the created waveforms to one of four
stimulus file formats. Y ou will run the simulation in aminute but first let us export the created
waveforms so we can use them later in the lesson.

1. Export the created waveformsin an HDL testbench format.
a. Seect File> Export > Waveform.

b. Select Verilog Testbench (or VHDL Testbench if you are using the VHDL sample
files).

c. Enter 1000 for End Time if necessary.
d. Enter export in the File Namefield and click OK (Figure 8-11).

Figure 8-11. The Export Waveform Dialog
Export Waveform x|

Save Az
’7 " FomceFile € EWCD File € WHDL Testbench % %erlog Testhench

Start Time End Time Time Uit

o | 1000 s b

Dezign Uit Mame

Icnunter

File Marne
|e:-:|:u:|rt Brnwse...l

[T Owerwiite Existing Files

ok | LCancel |

QuestaSim creates a file named export.v (or export.vhd) in the current directory.
Later in the lesson we will compile and simulate the file.

2. Export the created waveformsin an extended VCD format.
a. Select File> Export > Waveform.
b. Select EVCD File.
c. Enter 1000 for End Time if necessary and click OK.
QuestaSim creates an extended VCD file named export.ved. We will import thisfile
later in the lesson.
Run the Simulation

Once you have finished editing the waveforms, you can run the simulation straight away.

Questa SV/AFV Tutorial, v6.4c 97

Creating Stimulus With Waveform Editor
Simulating with the Testbench File

1. Addadesignsignal.
a. Inthe Objects pane, right-click count and select Add > To Wave > Selected items.

The signal is added to the Wave window.

2. Run the simulation.

a. Click the Run-All icon.

The simulation runs for 1000 ns and the waveform is drawn for
sim:/counter/count (Figure 8-12).

Figure 8-12. The counter Waveform Reacts to Stimulus Patterns

[T wave - default

Messages

“'n Edit: foounter fclk

Ol |
)

| M Wave I

Look at the signal transitions for count from 300 ns to 500 ns. The transitions occur
when clk goes high, and you can see that count follows the pattern you created when

you edited clk by stretching and deleting edges.

3. Quit the ssmulation.

a. Inthe Main window, select Simulate > End Simulation, and click Y esto confirm
you want to quit simulating.

Simulating with the Testbench File

Earlier in the lesson you exported the created waveforms to atestbench file. In thisexercise you
will compile and load the testbench and then run the simulation.

1. Compile and load the testbench.
a. At the QuestaSim prompt, enter viog export.v (or vcom export.vhd if you are
working with VHDL files).
Y ou should see adesign unit named export appear in the Library tab (Figure 8-13).

98 Questa SV/AFV Tutorial, v6.4c

Creating Stimulus With Waveform Editor
Simulating with the Testbench File

Figure 8-13. The export Testbench Compiled into the work Library

Workspace H
*|arme Type |Path -
—HMl work Library work
M _oRt Optirnized, ..
M _optl Optirnized, ..
{1/] counter Module C: [Tukarialfexamples
Module Z:h Tutorialexamples
] test_rounter Module C: [Tukarialfexamples
+ FloatFixlib Library $MODEL_TECHY. . /Flo
+ ki Library FMODEL_TECH/. . [av
+ ki Library $MODEL_TECH/. . Jow
. d
< | |

b. Enter the following command at the QuestaSim> prompt.
vsi m - vopt ar gs="+acc" export
2. Add waves and run the design.
a. AttheVSIM> prompt, type add wave *.
b. Next typerun 1000.

The waveforms in the Wave window match those you saw in the last exercise
(Figure 8-14).

Figure 8-14. Waves from Newly Created Testbench

m wave - defaulk

Messages

3. Quit the smulation.

a IntheMain window, select Simulate > End Simulation, and click Y esto confirm
you want to quit simulating.

Questa SV/AFV Tutorial, v6.4c 99

Creating Stimulus With Waveform Editor
Importing an EVCD File

Importing an EVCD File

Earlier in the lesson you exported the created waveformsto an extended VCD file. In this
exercise you will use that file to stimulate the counter design unit.

1. Load the counter design unit and add waves.
a. Enter the following command at the QuestaSim> prompt.
vsi m -vopt args="+acc" counter
b. Inthe Objects pane, right-click count and select Add > To Wave > Selected items.
2. Import the VCD file.

a. Make sure the Wave window is active, then select File> Import > EVCD from the
menu bar.

b. Double-click export.vcd.

The created waveforms draw in the Wave window (Figure 8-15).

Figure 8-15. EVCD File Loaded in Wave Window
m wave - default

=i feount;
‘n Edit: /count
"‘n Edit: fcounter]. .. | SO

LEe

Cursar 1

c. Click theRun -All icon.

The simulation runs for 1000 ns and the waveform is drawn for
sim:/counter/count (Figure 8-16).

100 Questa SV/AFV Tutorial, v6.4c

Creating Stimulus With Waveform Editor
Importing an EVCD File

Figure 8-16. Simulation results with EVCD File

[T wave - default

Messages

[+ 0. 0. Jooodooio Jol 0o, ol oo

4 Edit:jeounterjclk |5t
“n Edit: fcounter/. .. | St0
L
Tl Cursar 1

I |

gl wave ﬂ_ﬂ

When you import an EVCD file, signal mapping happens automatically if signa
names and widths match. If they do not, you have to manually map the signals. Refer

to the section Signal Mapping and Importing EVCD Filesin the User’s Manual for
more information.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Inthe Main window, select Simulate > End Simulation. Click Yes.

Questa SV/AFV Tutorial, v6.4c 101

Creating Stimulus With Waveform Editor
Importing an EVCD File

102 Questa SV/AFV Tutorial, v6.4c

Chapter 9
Debugging With The Dataflow Window

Introduction

The Dataflow window allows you to explore the "physical” connectivity of your design; to trace
events that propagate through the design; and to identify the cause of unexpected outputs. The
window displays processes; signals, nets, and registers; and interconnect.

Note
The functionality described in this lesson requires a dataflow license feature in your

QuestaSim license file. Please contact your Mentor Graphics sales representative if you
currently do not have such afeature.

Design Files for this Lesson

The sample design for this lesson is a testbench that verifies a cache module and how it works
with primary memory. A processor design unit provides read and write requests.

The pathnames to the files are as follows:
Verilog —<install_dir>/examples/tutorial s/verilog/datafl ow
VHDL —<install_dir>/examples/tutorials/vhdl/dataflow

This lesson uses the Verilog version in the examples. If you have a VHDL license, use the
VHDL version instead. When necessary, we distinguish between the Verilog and VHDL
versions of the design.

Related Reading
User’s Manual Sections. Debugging with the Dataflow Window and Dataflow Window.

Compile and Load the Design

In this exercise you will use aDO file to compile and load the design.

1. Create anew directory and copy thetutorial filesinto it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/examples/tutorials/verilog/dataflow to the new directory.

Questa SV/AFV Tutorial, v6.4c 103

Debugging With The Dataflow Window
Exploring Connectivity

If you have aVHDL license, copy thefilesin
<install_dir>/examples/tutorial s/vhdl/datafl ow instead.

2. Start QuestaSim and change to the exercise directory.

If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a. Typevsim at aUNIX shell prompt or use the QuestaSim icon in Windows.
If the Welcome to QuestaSim dialog appears, click Close.
b. Select File> Change Directory and change to the directory you created in step 1.
3. Executethelesson DOfile.
a. Typedo run.do at the QuestaSim> prompt.
The DO file does the following:
* Createsthe working library
e Compilesthe design files
* Opensthe Dataflow window
* Loadsthe design into the simulator
* Addssignalsto the Wave window
* Logsal signalsinthedesign

¢ Runsthe simulation

Exploring Connectivity

A primary use of the Dataflow window is exploring the "physical” connectivity of your design.
Y ou do this by expanding the view from process to process. This allows you to see the
drivers/receivers of aparticular signal, net, or register.

1. Addasigna to the Dataflow window.
a. Make sureinstance p is selected in the sim tab of the Workspace pane.
b. Dragsignal strb from the Objects pane to the Dataflow window (Figure 9-1).

104 Questa SV/AFV Tutorial, v6.4c

Debugging With The Dataflow Window
Exploring Connectivity

Figure 9-1. A Signal in the Dataflow Window

EFE dataflow

I £ wave l @ proc.y l ﬁ dataflow I RE

2. Explorethe design.
a. Double-click the net highlighted in red.
The view expands to display the processes that are connected to strb (Figure 9-2).

Figure 9-2. Expanding the View to Display Connected Processes

EF:% dataflaw

1000 bit

l M WAYE l @ proc.y I ﬁ dataflow | ﬂil

Select signal test on process #NAND#50 (labeled line_71 in the VHDL version) and
click the Expand net to all driversicon. 2%

Questa SV/AFV Tutorial, v6.4c 105

Debugging With The Dataflow Window
Tracing Events

EI-'I;'% dataflow

Figure 9-3. The test Net Expanded to Show All Drivers

l M Wave l @ proc, I ﬁdataﬂuw I ﬂﬂ

Notice that after the display expands, the signal line for strb is highlighted in green.
This highlighting indicates the path you have traversed in the design.

Select signal oen on process #ALWAYS#155(labeled line_84 in the VHDL version),
and click the Expand net to all readersicon. C

Continue exploring if you wish.

When you are done, click the Erase All icon. | g2

Tracing Events

Another useful debugging feature is tracing events that contribute to an unexpected output
value. Using the Dataflow window’ s embedded wave viewer, you can trace backward from a
transition to see which process or signal caused the unexpected outpui.

1. Add an object to the Dataflow window.

a
b.

C.

Make sure instance p is selected in the sim tab of the Main window.
Drag signal t_out from the Objects pane into the Datafl ow window.
Undock the Dataflow window.

Select View > Show Wave in the Dataflow window to open the Wave Viewer
(Figure 9-4). Y ou may need to increase the size of the Dataflow window and scroll
the panes to see everything.

106

Questa SV/AFV Tutorial, v6.4c

Debugging With The Dataflow Window
Tracing Events

Figure 9-4. The embedded wave viewer pane

dataflow - default -0 x|

File Edit Yew Add Trace Tools ‘Window

Wave Viewern

2820 ns

Cursar 1

[kesp[0]

2. Tracetheinputs of the nand gate.

a. Select process #NAND#50 (labeled line_71 in the VHDL version) in the dataflow
pane. All input and output signals of the process are displayed in the wave viewer
(Figure 9-5).

Questa SV/AFV Tutorial, v6.4c 107

Debugging With The Dataflow Window
Tracing Events

Figure 9-5. Signals Added to the Wave Viewer Automatically

dataflow - default =10l x|

File Edit Wwiew #add Trace Tools ‘Window

Messages

— Inputs:
4 II'|:|:|

4 Iropfplstrb

— Jukputs:

4. fbopfpt_ouk

Lpe M 2820 ns
- Cursor 1 0 ns
4 2 Hld |

| lkeep| 1] (top i #NAND#S0

b. Inthewave view, scroll to the last transition of signal t_out.

c. Click just to theright of the last transition of signal t_out. The cursor should snap to
time 2785 ns.

d. Click onthet_out signa in the dataflow diagram to highlight it.
e. Select Trace> Trace next event to trace the first contributing event.

QuestaSim adds a cursor marking the last event, the transition of the strobe to O at
2745 ns, which caused the output of 1 ont_out (Figure 9-6).

108 Questa SV/AFV Tutorial, v6.4c

Debugging With The Dataflow Window
Tracing Events

Figure 9-6. Cursor in Wave Viewer Marks Last Event

Jtop!p/strb Sk0 J

Cursor 2 2745 ns

1 3 K 3 (KT [|

f. Select Trace > Trace next event two more times.
g. Select Trace> Trace event set.

The dataflow pane sprouts to the preceding process and shows the input driver of the
strb signal (Figure 9-7). Notice, aso, that the wave viewer now shows the input and
output signals of the newly selected process.

Figure 9-7. Tracing the Event Set

dataflow - default - default =10 x|

File Edit %iew &dd Trace Tools ‘Window

Messages

— Inputs:
Ttopipistrb_r 0
— Oubputs:
4. ftopp)strb St

cme Now 2000 ns 2500 ns
T Cursaor 1 on
- Cursar 2 2665 ns

| ™ [3 |

Questa SV/AFV Tutorial, v6.4c 109

Debugging With The Dataflow Window
Tracing an X (Unknown)

Y ou can continue tracing events through the design in this manner: select Trace
next event until you get to atransition of interest in the wave viewer, and then select
Trace event set to update the dataflow pane.

3. Sdect File> Close Window to close the Dataflow window.

Tracing an X (Unknown)

The Dataflow window lets you easily track an unknown value (X) as it propagates through the
design. The Dataflow window is linked to the Wave window, so you can view signalsin the
Wave window and then use the Dataflow window to track the source of a problem. Asyou

traverse your design in the Datafl ow window, appropriate signals are added automatically to the
Wave window.

1. Viewt outinthe Wave and Dataflow windows.
a. Scroll in the Wave window until you can see /top/p/t_oui.

t_out goesto an unknown state, StX, at 2065 ns and continues transitioning between
1 and unknown for the rest of the run (Figure 9-8). The red color of the waveform
indicates an unknown value.

Figure 9-8. A Signal with Unknown Values

m wave - default

Jtop/pft_out Sk

Cursar 1 2785 ns 2785 ns
1 3K 3 (T]|
-l Mwave I [h] proc.y I

b. Double-click thet_out waveform at the last transition of signal t_out at 2785 ns.

This automatically opens a dataflow tab in the MDI frame and displayst_out, its
associated process, and its waveform. Y ou may need to increase the size of the
Dataflow window and scroll the panes to see everything.

c. Undock the Dataflow window.

110 Questa SV/AFV Tutorial, v6.4c

Debugging With The Dataflow Window
Tracing an X (Unknown)

d. Movethe cursor in the Wave window.

As previously mentioned the Wave and Dataflow windows are designed to work
together. Asyou move the cursor in the Wave, the value of t_out changesin the flow
diagram portion of the Dataflow window.

e. Move the cursor in the Wave Viewer of the Dataflow window to atime whent_out
isunknown (e.g., 2725 ns). If the Wave Viewer is not showing, click the Show
Waveicon or select View > Show Wave.

2. Trace the unknown.

a. Inthe Dataflow window, make suret_out is selected and then select Trace >
ChaseX.

The design expands to show the source of the unknown (Figure 9-9). In this case
thereisaHiZ (U inthe VHDL version) on input signal test_in and a0 on input
signal _rw (bar_rwinthe VHDL version). This causes the test2 output signal to
resolve to an unknown state (StX). The unknown state propagates through the design
tot_out.

Figure 9-9. ChaseX Identifies Cause of Unknown on t_out

=

File Edit “iew Mavigate Trace Tools ‘hindow

IZSES BR O M

Mo Ju] ! o} N t_out

2020 ks

Curzor 1

| 4 i K7 D=

| Extended mode enabled | IKeep | 1] Aopfpitest2 p

Scroll to the bottom of the Wave window, and you will see that all of the signals
contributing to the unknown value have been added.

3. Clear the Dataflow window before continuing.

a. Click the Erase All icon to clear the Dataflow view.

Questa SV/AFV Tutorial, v6.4c 111

Debugging With The Dataflow Window
Displaying Hierarchy in the Dataflow Window

b. Click the Show Wave icon to close the Wave view of the Dataflow window.

Displaying Hierarchy in the Dataflow Window

Y ou can display connectivity in the Dataflow window using hierarchical instances. Y ou enable
this by modifying the options prior to adding objects to the window.

1. Change optionsto display hierarchy.

a. With the Dataflow window undocked, select Tools > Options from the Dataflow
window menu bar.

With the Dataflow window docked, and the dataflow tab selected in the MDI frame,
select Dataflow > Dataflow Preferences > Options from the Main window menus.

b. Check Show Hierarchy and then click OK.
2. Addsignal t_out to the Dataflow window.
a. Typeadd dataflow /top/p/t_out at the VSIM> prompt.
The Dataflow window will display t_out and all hierarchical instances (Figure 9-10).

112 Questa SV/AFV Tutorial, v6.4c

Debugging With The Dataflow Window
Displaying Hierarchy in the Dataflow Window

Figure 9-10. Displaying Hierarchy in the Dataflow Window

dataflow - default =10l x|
File Edit “iew &dd Trace Tools Window
BO AL CERA|| Qe s of

[N @iee »xduci@mze bl vy

Hop
Mopip

Mopdm
__ et

ridy

paddr|__

P

| Hier |Keep | 1 | [copfpjt_out

Questa SV/AFV Tutorial, v6.4c 113

Debugging With The Dataflow Window
Displaying Hierarchy in the Dataflow Window

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Typequit -sim at the VSIM> prompt.

114 Questa SV/AFV Tutorial, v6.4c

Chapter 10
Viewing And Initializing Memories

Introduction

In thislesson you will learn how to view and initialize memories in QuestaSim. QuestaSim
defines and lists as memories any of the following:

* reg, wire, and std_logic arrays
* Integer arrays
* Singledimensional arrays of VHDL enumerated types other than std_logic

Design Files for this Lesson

The QuestaSim installation comeswith Verilog and VHDL versions of the example design. The
filesarelocated in the following directories:

Verilog —<install_dir>/examples/tutorials/verilog/memory
VHDL —<install_dir>/examples/tutorials/'vhdl/memory

This lesson uses the Verilog version for the exercises. If you have aVHDL license, use the
VHDL version instead.

Related Reading
User's Manual Section: Memory Panes.

Reference Manul commands. mem display, mem load, mem save, and radix.

Compile and Load the Design
1. Create anew directory and copy thetutorial filesinto it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/examples/tutorials/verilog/memory to the new directory.

If you have aVHDL license, copy thefilesin
<install_dir>/examples/tutorial s/vhdl/memory instead.

2. Start QuestaSim and change to the exercise directory.

Questa SV/AFV Tutorial, v6.4c 115

Viewing And Initializing Memories
View a Memory and its Contents

If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a

b.

a
b.

a

Typevsim at a UNIX shell prompt or use the QuestaSim icon in Windows.
If the Welcome to QuestaSim dialog appears, click Close.
Select File > Change Directory and change to the directory you created in step 1.

. Create the working library and compile the design.

Type vlib work at the QuestaSim> prompt.

Verilog:
Typevlog sp_syn_ram.vdp_syn ram.vram_tb.v at the QuestaSim> prompt.

VHDL:
Typevcom -93 sp_syn_ram.vhd dp_syn_ram.vhd ram_tb.vhd at the QuestaSim>
prompt.

. Load the design.

Enter the following command at the QuestaSim> prompt in the Transcript window.
vsim -voptargs="+acc" ram_tb

The -voptar gs="+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note

[

By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

View a Memory and its Contents

The Memories tab of the Main window lists all memoriesin the design when the designis
loaded; with the range, depth, and width of each memory displayed.

VHDL: The radix for enumerated types is Symbolic. To change the radix to binary for the
purposes of this lesson, type the following command at the VSIM> prompt:

radix bin

1. Open aMemory instance to show its contents.

a. Double-click the /ram_tb/spraml/mem instance in the memorieslist to view its
contents in the MDI frame.

A mem tabiscreated in the MDI frameto display the memory contents. The dataare

all X (0inVHDL) since you have not yet simulated the design. The first column

116

Questa SV/AFV Tutorial, v6.4c

Viewing And Initializing Memories
View a Memory and its Contents

(blue hex characters) lists the addresses (Figure 10-1), and the remaining columns
show the data values.

Figure 10-1. The mem Tab in the MDI Frame Shows Addresses and Data

;:E Moy - .-"rar|'|_t|:|.-":5:|:|rarn'I Amermn

ooooooon
ooooooos
oooooa0e
oooooolE
ooooool:
oooo00le
Oooo00E4
000000Ea
ooooooz0n
ooooo0zae
annnnnsEe

HEXXHHNY
HEKXHHEX
HEXXHHNX
HEXXHHNX
HEXXHHNY
HEKXHHEX
HEXXHHNX
HEXXHHNX
HEXXHHNY
HEKXHHEX

WHHWWTWEW

[S|

HUEXXNHXXX
HEXXHEEX
HEXXHXXEX
HEXXHXXEX
HUEXXNHXXX
HEXXHEEX
HEXXHXXEX
HEXXHXXEX
HUEXXNHXXX
HEXXHEEX

WHWWTTWEWTY

HUEXMHXXX
HHEHHHEEXEX
HUEHHHEXXX
HUEHHHEXXX
HUEXMHXXX
HHEHHHEEXEX
HUEHHHEXXX
HUEHHHEXXX
HUEXMHXXX
HHEHHHEEXEX

WHHHTEWTEY

HHHNXEXX
HHHHEXEEX
HHHEXXEXX
HHHEXXEXX
HHHNXEXX
HHHHEXEEX
HHHEXXEXX
HHHEXXEXX
HHHNXEXX
HHHHEXEEX

L

HHXXXEXX
HHEXEXEXEX
HHXXXXEXX
HHXXXXEXX
HHXXXEXX
HHEXEXEXEX
HHXXXXEXX
HHXXXXEXX
HHXXXEXX
HHEXEXEXEX

WUWWWWWWW

HEXXHHNX
HEEKKEXEEX
HEXXHHXX
HEXXHHXX
HEXXHHNX
HEEKKEXEEX
HEXXHHXX
HEXXHHXX
HEXXHHNX
HEEKKEXEEX

MWW W WY

-

B mem

o3|

b. Double-click instance /ram_tb/spram2/mem in the Memories tab of the Workspace,
This creates anew tab in the MDI frame called mem(1) that contains the addresses
and data for the spram?2 instance. Each time you double-click a new memory
instance in the Workspace, a new tab is created for that instance in the MDI frame.

2. Simulate the design.

a. Click therun -all icon in the Main window.

b. Click the mem tab of the MDI frame to bring the /ram_tb/spraml/memto the

foreground. The data fields now show values (Figure 10-2).

Figure 10-2. The Memory Display Updates with the Simulation

=2 memary - Aram_thspram Amem

aooooooo
oooooooe
ooooooae
oooooolz
ooooools
ooooodle
ooooooz4
ooo000Za
oooooozo
aoooonze

oololoon
oololllno
oollolon
oollloln
olooooon
olooollno
oloollon
ololoolno
ololloon
ololllln

& 7l

oo1olo0l
00101111
0011010l
00111011
oloooool
0100011l
0100110l
01010011
0101100l
01011111

ooLololn
ooLio000
ooL1olln
ooLl11100
olooooln
olooloon
oloolllo
olo1o100
olol1loln
olio0000

oolololl
ooL1o00l
ooL1o0lll
o0l11101
olooooll
oloolool
oloollil
olololol
ololloll
olLiooool

oolollioo
oolioo01o
oolllooo
ool1liino
oloooloo
oloololo
ololoooo
olololino
ololllioo
olriooolio

oololiol
oo0llo0o01l
oolllool
o0111111
olooolol
oloololl
ololoool
olol0l1l
ololliol
olioooll

VHDL:

1 B mem l B mem [1] l |h] ram_th.v I

In the Transcript pane, you will see NUMERIC_STD warnings that can be ignored and

Questa SV/AFV Tutorial, v6.4c

117

Viewing And Initializing Memories
View a Memory and its Contents

an assertion failure that is functioning to stop the simulation. The simulation itself has
not failed.

3. Change the address radix and the number of words per line for instance
/ram_tb/spraml/mem.

a. Right-click anywhere in the Memory Contents pane and select Properties.

b. The Properties dialog box opens (Figure 10-3).

Figure 10-3. Changing the Address Radix

x
— Addrezs Radis—) [Data RBadis—
" Hexadecimal * Symbolic
&+ Decimal " Binany
" Octal
™ Decimal
" Unsigned
™ Hexadecimal
— Line %rap
 Fitin Window
& wWords per Line |1_
ak. I LCancel I

c. For the Address Radix, select Decimal. This changes the radix for the addresses
only.

d. Select Words per lineand type 1 in thefield.
e. Click OK.

Y ou can see the results of the settings in Figure 10-4. If the figure doesn’t match what
you have in your QuestaSim session, check to make sure you set the Address Radix
rather than the Data Radix. Data Radix should still be set to Symbolic, the default.

118 Questa SV/AFV Tutorial, v6.4c

Viewing And Initializing Memories
View a Memory and its Contents

Figure 10-4. New Address Radix and Line Length

2= memary - Aram_tbAspram fmem

00101000 3

oo0lolool
oolololno
oolololl
oolollon
o0lollo0l
oololllno
oo0lollll
oollooon0
o0llooo0l

| || -
1 B mem l B mem [1] l ﬂram_tl:u.v] 3]

W -] Mmoo WM O

Navigate Within the Memory

Y ou can navigate to specific memory address |locations, or to locations containing particular
data patterns. First, you will go to a specific address.

1. Use Goto to find a specific address.
a. Right-click anywhere in address column and select Goto (Figure 10-5).
The Goto dialog box opensin the data pane.

Figure 10-5. Goto Dialog

B memary - fram_thdsprami Amem & x|
0 |oololooo ﬂ
1 joololool Goto: Memory x|
z |ooilo1o1o
3 |oolololl Goto Address
4 |oo1lo11oo
£ [oolollol |3':'
& |oo1lo1i11o
7 |oo1o1111
g |oolioooo ak. | Cancel |
5 |oo11ooo1
K I K H=
1 B mem 1 BE mem (1) 1 |h] ram_th.w J 4|3

b. Type 30in the Goto Addressfield.

c. Click OK.

The requested address appears in the top line of the window.
2. Edit the address location directly.

Questa SV/AFV Tutorial, v6.4c 119

Viewing And Initializing Memories
View a Memory and its Contents

a. Toquickly moveto aparticular address, do the following:

i. Double click address 38 in the address column.
ii. Enter address 100 (Figure 10-6).

Figure 10-6. Editing the Address Directly

522 memary - fram_tb/sprami/mem

100

<

20
21
2E
33
24
2k
o1
37

0loo0o110
0100011l
oloo1o00
0lo01o0l
0loo01ol10
0100101l
01001100
0100110l
01001110
01001111

v

1 B mem l B mem (1] l |h] ramn_th.s I

iii. Press<Enter> on your keyboard.

The pane scrolls to that address.

3. Now, let’sfind a particular data entry.

a. Right-click anywhere in the data column and select Find.

The Find in dialog box opens (Figure 10-7).

Figure 10-7. Searching for a Specific Data Value

B memary - fram_thysprami fmem

94
95
96
a7
a3
99
10a
10l
1oz
103
104
105
loa

[11

lodoollo
loooolll
loonlaoo
loonlool
loonlolo
loonloll
loonlloo
loonllol
looolllo
loonllll
loodlaaoo
looloool
looloolo

Find in /ram_tbh/spraml /mem

—Find Data

Find Next |

Pattern; 11111010
(* glob (E.g. 1234, 101 011, *057, 'hFa3E)

" regexp

Replace with: |
™ Find backwards

Replace

Feplace Al

Close

-l B mem | B mem (1) l \h] ram_tb.v I

2=
o3

120

Questa SV/AFV Tutorial, v6.4c

Viewing And Initializing Memories
Export Memory Data to a File

b. Type11111010inthe Find data: field and click Find Next.

The data scrolls to the first occurrence of that address. Click Find Next afew more
times to search through the list.

c. Click Closeto close the dialog box.

Export Memory Data to a File

Y ou can save memory datato afile that can be loaded at some later point in simulation.

1. Export amemory pattern from the /ram_tb/spraml/mem instanceto afile.
a. Make sure/ram_tb/spraml/memis open and selected in the MDI frame.

b. Select File> Export > Memory Data to bring up the Export Memory dialog box
(Figure 10-8).

Questa SV/AFV Tutorial, v6.4c 121

Viewing And Initializing Memories
Export Memory Data to a File

Figure 10-8. Export Memory Dialog

Export Memory x|

— Instance Mame
Irar_tbjsprami fmem

— #Address Range
= al

" aAddresses {in decimal)

Start |0 End |4095
File Format
£ Yerilog Hex [Mo addresses
" verilog Binary [T Compress
&+ M1
— Address Radiz) [Data Radiz—
" Hexadecimal " Symbalic
% Decimal % Binary
" Octal
" Decimal
" Unsigred
" Hexadecimal

—Line YWrap
£~ Fit in Windaow

% words per Line I]_

File Save

Filename |data mem. menl Browse. ..

[8]4 | Cancel |

For the Address Radix, select Decimal.
For the Data Radix, select Binary.

e o

e. For theLine Wrap, set to 1 word per line.

f. Typedata mem.mem into the Filename field.
g. Click OK.

Y ou can view the exported file in any editor.

Memory pattern files can be exported as rel ocatable files, smply by leaving out the
address information. Rel ocatable memory files can be loaded anywhere in a memory
because no addresses are specified.

122 Questa SV/AFV Tutorial, v6.4c

Viewing And Initializing Memories
Initialize a Memory

2. Export arelocatable memory pattern file from the /ram_th/spram2/mem instance.

a

Select the mem(1) tab in the MDI pane to see the data for the /ram_th/spram2/mem
instance.

Right-click on the memory contents to open a popup menu and select Properties.

In the Properties dialog, set the Address Radix to Decimal; the Data Radix to
Binary; and the Line Wrap to 1 Words per Line. Click OK to accept the changes
and close the dialog.

Select File> Export > Memory Data to bring up the Export Memory dialog box.
For the Address Range, specify a Start address of 0 and End address of 250.

For the File Format, select MT1 and click No addr esses to create a memory pattern
that you can use to rel ocate somewhere else in the memory, or in another memory.

g. For Address Radix select Decimal, and for Data Radix select Binary.

h. For the Line Wrap, set 1 Words per Line.

Enter the file name as reloc.mem, then click OK to save the memory contents and
closethe dialog. You will usethisfilefor initialization in the next section.

Initialize a Memory

In QuestaSim, it is possible to initialize amemory using one of three methods: from an exported
memory file, from afill pattern, or from both.

First, let’sinitialize amemory from afile only. Y ou will use one you exported previoudly,
data_mem.mem.

1. View instance /ram_tb/spram3/mem.

a

Double-click the /ram_tb/spram3/mem instance in the Memories tab.

Thiswill open anew tab — mem(2) —in the MDI frame to display the contents of
/ram_tb/spram3/mem. Scan these contents so you can identify changes once the
initialization is complete.

Right-click and select Properties to bring up the Properties dial og.

Change the Address Radix to Decimal, Data Radix to Binary, LineWrap to 1
Words per Line, and click OK.

2. Initialize spram3 from afile.

a

Right-click anywhere in the data column and select Import to bring up the Import
Memory dialog box (Figure 10-9).

Questa SV/AFV Tutorial, v6.4c 123

Viewing And Initializing Memories
Initialize a Memory

—Instance Mame
fram_tbspram3)mem

Figure 10-9. Import Memory Dialog

— Load Type
* File Only

{” Data Only
" Both File and Data

Address Fange
Lo

"~ Addresses (in decimal)

start |0 End |65535

—File Load

—File Format
™ Werilog Hex
= Yerilog Binary
ML
{* specified in File

[Update Properties

Loading Maode
% Incremental
" Mo Incremental

— Filename

data mem. mertl

Browse, ..

—Data Load

—Fill Data

" Increment

" Decrement
" Random

—Skip

IIII word(s)

Ok,

Zancel

The default Load TypeisFile Only.

b. Typedata_mem.memin the Filename field.

c. Click OK.

The addresses in instance /ram_tb/spram3/mem are updated with the datafrom
data_mem.mem (Figure 10-10).

124

Questa SV/AFV Tutorial, v6.4c

Viewing And Initializing Memories
Initialize a Memory

Figure 10-10. Initialized Memory from File and Fill Pattern

= ernory - Aram_tb spram3/merm

244 |(0O0000O0O0OQOO0000000000000000011100 ﬂ
245 (0O00000o0o00000000000000000011101
246 (ooooooooooooooooooooooono001l1110
247 |(00000000000000000000000000011111
242 |(00000000000000000000000000100000
243 (0o000000000000000000000000100001
250 (ooooooooooooooooooooooooo01a00lo
251l |(0O0000O00000000000000000000100011
ZLE |0OO000O00000000000000000000100100
253 |oooooooooooo0oooo00o0000001o0lol

< 2T |
I B mem l B mem (1] l |h] ram_th.v l B mem [2] I EE

In this next step, you will experiment with importing from both afile and afill pattern.
Y ou will initialize spram3 with the 250 addresses of data you exported previously into
the relocatablefile reloc.mem. Y ou will also initialize 50 additional address entries with
afill pattern.

3. Import the /ram_tb/spram3/mem instance with a relocatable memory pattern
(reloc.mem) and afill pattern.

a. Right-click in the data column of the mem(2) tab and select Import to bring up the
Import Memory dialog box.

b. For Load Type, select Both File and Data.

c. For Address Range, select Addresses and enter O as the Start address and 300 asthe
End address.

This means that you will be loading the file from 0 to 300. However, the reloc.mem
file contains only 251 addresses of data. Addresses 251 to 300 will be loaded with
thefill data you specify next.

d. For FileLoad, select the M TI File Format and enter reloc.mem in the Filename
field.

e. For DataLoad, select aFill Type of Increment.
f. IntheFill Datafield, set the seed value of O for the incrementing data.
Click OK.

h. View the data near address 250 by double-clicking on any address in the Address
column and entering 250.

Y ou can see the specified range of addresses overwritten with the new data. Also, you
can see the incrementing data beginning at address 251 (Figure 10-11).

Questa SV/AFV Tutorial, v6.4c 125

Viewing And Initializing Memories
Interactive Debugging Commands

Figure 10-11. Data Increments Starting at Address 251

== memory - fram_thspram3/mem

2459 (00000O0Q0000000000010010000100001 ﬂ
ZLO (0OO00O0OOO0000000000010010000100010
ZE1 (0O000O00000000000000000000000000
Z£5Z (0ooooooooo00000000000000a0000001
EL3 |0O000O000000000000000000000000010
ZL4 |(0OO00OOOOOO0000000000000000000011
ZLL (0O00O0OOOO000000000000000000000100
£56 (0oooooooo00000000000000000000101
EET |0O000000000000000000000000000110
ZLg |ooooooooooo00ooo00o00000000001l1l

KN 2 KN 2
I B meml B mem (1) lﬂ ranm_th.w l B mem [2) I fE

Now, before you leave this section, go ahead and clear the memory instances already
being viewed.

4. Right-click somewhere in the mem(2) pane and select Close All.

Interactive Debugging Commands

The memory panes can also be used interactively for a variety of debugging purposes. The
features described in this section are useful for this purpose.

1. Open amemory instance and change its display characteristics.
a. Double-click instance /ram_tb/dpraml/mem in the Memories tab.
b. Right-click in the memory contents pane and select Properties.
c. Changethe Address and Data Radix to Hexadecimal.
d. Select Wordsper line and enter 2.
e. Click OK. Theresult should be asin Figure 10-12.

126 Questa SV/AFV Tutorial, v6.4c

Viewing And Initializing Memories
Interactive Debugging Commands

Figure 10-12. Original Memory Content

522 memany - fram_th/dpram Amem

ooooooon jos 03 d
oooooooz |Ya 1b
ooooooo4 1o 1d
oooooooe |le 1f
ooooooos jzo 21
ooooo00a |22 23
oooooooe |24 25
oooooode |26 E27

;I rI 1 I _’I "I
b ram_thy | BE mem I EIE

2. Initialize arange of memory addresses from afill pattern.

a. Right-click in the data column of /ram_tb/dpraml/mem contents pane and select
Change to open the Change Memory dialog (Figure 10-13).

Figure 10-13. Changing Memory Content for a Range of Addresses

Change Memory x|

— Instance Mame
Jram_thfdpram1mem

— fAddress Range Fill Tvpe
ol i value

% addresses (in hexadecimal) " Tncrement

™ Decrement

Stark 000000006 End | 000000003
{* Randam
Fill Crata Skip
I':l ID word(s)
(04 | Cancel | Apply |

b. Select Addresses and enter the start address as 0x00000006 and the end address as
0x00000009. The "0x" hex notation is optional.

c. Select Random asthe Fill Type.
d. Enter O asthe Fill Data, setting the seed for the Random pattern.
e. Click OK.

The data in the specified range are replaced with a generated random fill pattern
(Figure 10-14).

Questa SV/AFV Tutorial, v6.4c 127

Viewing And Initializing Memories
Interactive Debugging Commands

Figure 10-14. Random Content Generated for a Range of Addresses

522 memany - fram_th/dpram Amem

ooooooon jos 03 d
oooooooz |Ya 1b
oooooo04 1o 1d
aooooooe |9z 40
ooooooos o4 21
ooooooda |2z 23
oooooooe |24 25
oooooode |26 E27

[ol
b ram_thy | BE mem I EIE

3. Change contents by highlighting.

Y ou can also change data by highlighting them in the Address Data pane.

a. Highlight the data for the addresses 0x0000000c: 0x0000000e, as shown in
Figure 10-15.

Figure 10-15. Changing Memory Contents by Highlighting

522 memany - fram_th/dpraml Amem

ooooooon joe 03 j
ogooooooz |Ya 1b
ooooooog J1lc 1d
gooooooe |9z 40
ooooooos o4 21
ooooooda |22 23

ooooooo

O000a00e 7

D ol
\h]ram_tb.y | B mem I kiE]

b. Right-click the highlighted data and select Change.

This brings up the Change memory dialog box (Figure 10-16). Note that the
Addresses field is aready populated with the range you highlighted.

128 Questa SV/AFV Tutorial, v6.4c

Viewing And Initializing Memories
Interactive Debugging Commands

Figure 10-16. Entering Data to Change

Change Memory x|

— Instance Mame

fram_tb/dprami frmem

—#ddress Range Fill Tvpe
o al e Yalue

* Addresses (in hexadecimal) " Increment

" Decrement

Start |0000000C End | 0000000
' Randaorn
Fill Data Skip
|34 35 3d |n word(s)
Ok | Cancel | Apply |

c. Select ValueastheFill Type.
d. Enter the data valuesinto the Fill Datafield as follows: 34 35 36
e. Click OK.
The data in the address |ocations change to the values you entered (Figure 10-17).

Figure 10-17. Changed Memory Contents for the Specified Addresses

222 memary - fram_thdpramlfmem

gooooooo jo&e 03 j
gooooooz |7a lhb
goooooog 1o 1d
gooooode |92 40
goooooos o4 31
goooooda |22 EZ

oooooaoc

ooooogde 7

o o
h] ram_tby | B mem]

4. Edit datain place.

& L
e b

To edit only one value at atime, do the following:
a. Double click any value in the Data column.
b. Enter the desired value and press <Enter> on your keyboard.

If you needed to cancel the edit function, press the <Esc> key on your keyboard.

Questa SV/AFV Tutorial, v6.4c 129

Viewing And Initializing Memories
Interactive Debugging Commands

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Select Smulate> End Simulation. Click Yes.

130 Questa SV/AFV Tutorial, v6.4c

Chapter 11
Analyzing Performance With The Profiler

Introduction

The Profiler identifies the percentage of simulation time spent in each section of your code as
well as the amount of memory allocated to each function and instance. With this information,
you can identify bottlenecks and reduce simulation time by optimizing your code. Users have
reported up to 75% reductions in simulation time after using the Profiler.

This lesson introduces the Profiler and shows you how to use the main Profiler commandsto
identify performance bottlenecks.

Note
The functionality described in this tutorial requires a profile license feature in your

QuestaSim license file. Please contact your Mentor Graphics sales representative if you
currently do not have such afeature.

Design Files for this Lesson

The example design for thislesson consists of afinite state machine which controls abehavioral
memory. The testbench test sm provides stimulus.

The QuestaSim installation comes with Verilog and VHDL versions of thisdesign. Thefilesare
located in the following directories:

Verilog — <install_dir>/examples/tutorials/verilog/profiler
VHDL —<install_dir>/examples/tutorials/vhdl/profiler_sm seq

This lesson uses the Verilog version for the exercises. If you have a VHDL license, use the
VHDL version instead.

Related Reading
User’s Manual Chapters. Profiling Performance and Memory Use and Tcl and Macros (DO
Files).

Compile and Load the Design

1. Create anew directory and copy thetutorial filesinto it.

Questa SV/AFV Tutorial, v6.4c 131

Analyzing Performance With The Profiler

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/examples/tutorials/verilog/profiler to the new directory.

If you have aVHDL license, copy thefilesin
<install_dir>/examples/tutorials/vhdl/profiler_sm seq instead.

2. Start QuestaSim and change to the exercise directory.

If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a. Typevsim at aUNIX shell prompt or use the QuestaSim icon in Windows.
If the Welcome to QuestaSim dialog appears, click Close.
b. Select File> Change Directory and change to the directory you created in step 1.
3. Create thework library.
a. Typevlib work at the QuestaSim> prompt.
4. Compilethe design files.

a. Verilog: Typevlog test_sm.v sm_seg.v sm.v beh_sram.v at the QuestaSim>
prompt.

VHDL: Type vcom -93 sm.vhd sm_seq.vhd sm_sram.vhd test_sm.vhd at the
QuestaSim> prompt.

5. Load the top-level design unit.

a. Enter vam -voptargs="+acc" test_sm at the QuestaSim> prompt of the Transcript

pane.
The -voptargs="+acc” argument for the vsim command provides visibility into the
design for debugging purposes.
Note
D By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

Run the Simulation
Y ou will now run the simulation and view the profiling data.
1. Enablethe statistical sampling profiler.

a. Select Tools> Profile > Performance or click the Performance Profilingiconin

the toolbar. ﬂ

132 Questa SV/AFV Tutorial, v6.4c

Analyzing Performance With The Profiler

Thismust be done prior to running the simulation. QuestaSim is now ready to collect

performance data when the smulation is run.

2. Run the smulation.

a. Typerun 1msattheVSIM> prompt.

Notice that the number of samples taken is displayed both in the Transcript and the
Main window status bar (Figure 11-1). (Y our results may not match thosein the
figure.) Also, QuestaSim reports the percentage of samples that were taken in your
design code (versusin internal simulator code).

Figure 11-1. Sampling Reported in the Transcript

Tranzcrpt

#
#
#
#
#
#
#
#

#

WEIM 45 |

933111 illegal op received
999155 outof = 000000

993495 outof = 00000023
999555 autaf = 000000BE
999615 outof = 000000cc
993675 outof = 000000cd
999735 autaf = 000000z
935751 illegal op received
999795 nutnf = ONOOAM

Prafiling paused. 1871 zamples taken [73% in user code]

|N|:|w: 1 ms Delta: 2 | Profile Samples: 181

3. Digplay the statistical performance datain the Profile pane.

a. Select View > Profiling > Profile.

The Profile pane (you may need to increase its size) displays four tab-selectable
views of the data—Ranked, Design Units, Call Tree, and Structural (Figure 11-2).
(Your results may not match those in the figure.)

Questa SV/AFV Tutorial, v6.4c

133

Analyzing Performance With The Profiler

Prafile

Figure 11-2. The Profile Window

‘l"IName |Underl{raw}|ln(raw} |Lln|:|er|{°.f.:-]| |Inl{°.f-:.]| | |
Tel_\aitFarEvent 72 T2 53.3% 53.3%
besk_sm.v:105 as 17 £3.0% 12.6%:

s 73 17 = 12.6%: 3.7%
TolpHasSockets 4 3 3.0% 2.2%
Tol_GetTime 3 3 2.2%: 2.2%
Lest_sm, w92] 3 2.2% 2.2%
Tol_OpenTopServer z2 2 1.5% 1.5%
Tel_DoDneEyvent 79 0 55.5% 0.0%:
Tel_DeleteTimerHandler 3 1] 2.2% 0.0%:
Tcl_Flush 2 0 1.5% 0.0%
-I Ranked | Design Uniks l Call Tree l Skructural ‘ ﬂil

The table below gives a description of the columns in each tab. For more details on

each pane, refer to the section Viewing Profiler Results in the User’s Manual.

Table 11-1. Columns in the Profile Window

Column

Description

Count

(Design Unit view only) quantity of design objects analyzed

Under(raw)

the raw number of Profiler samples collected during the
execution of afunction, including all support routines under
that function; or, the number of samples collected for an
instance, including al instances beneath it in the structural
hierarchy

In(raw)

the raw number of Profiler samples collected during a
function or instance

Under(%0)

theratio (as a percentage) of the samples collected during the
execution of afunction and all support routines under that
function to the total number of samples collected; or, theratio
of the samples collected during an instance, including all
instances beneath it in the structural hierarchy, to the total
number of samples collected

In(%)

the ratio (as a percentage) of the total samples collected
during afunction or instance

%Parent

(not in the Ranked view) the ratio (as a percentage) of the
samples collected during the execution of a function or
instance to the samples collected in the parent function or
instance

134

Questa SV/AFV Tutorial, v6.4c

Analyzing Performance With The Profiler

Datain the Ranked view is sorted by default from highest to lowest percentagein the
In(%) column. In the Design Unit, Call Tree, and Structural views, dataiis sorted (by
default) according to the Under(%) column. Y ou can click the heading of any
column to sort data by that column.

The"Tcl_*" entries are functions that are part of the internal simulation code. They
are not directly related to your HDL code.

b. Click the Design Unit tab to view the profile data organized by design unit.

Figure 11-3. Design Unit Performance Profile

"Ir'-.lame |C|:|unt |Under(raw}|1n{raw} |Under|{°.-1:.]| |Inl{°.f.:.]| |%F‘arent ||
SM_Sen 1 1 1 0, 7% 0.7%
=}—=m 1 17 17 12.6%: 12.6%:
—F sman T3 17 5 12.6%: 3.7% 100%:
=+ 'El_DDDnEEvent 11] 2. 1% 0,0%: B5%
Tel_\waitFaorEvent 11 11 g, 1% 1% 100%:
beh_sram 1 1 1 0, 7% 0,7%
=kesk_sm 1 an a0 66, 7% B, 7%
-} test_sm.w 105 a5 17 63.0% 12.6%: 0%
+} Tol_DoCneEwvent [t] S0.4% 0.0% 0%
best_sm.v:92 3 3 2. 2% 2.2% 3%
Ranked | Design Units | Call Tree l Struckural I ﬂil

c. Click the Call Treetab to view the profile datain a hierarchical, function-call tree
display.

Theresults differ between the Verilog and VHDL versions of the design. In Verilog,
line 105 (test_sm.v:105) is taking the majority of simulation time. In VHDL,
test_sm.vhd: 203 and sm.vhd: 93 are taking the majority of the time.

Note
D Y our results may look slightly different as a result of the computer you’ re using and

different system calls that occur during the simulation. Also, the line number reported
may be one or two lines off in the actual source file. This happens due to how the
stacktrace is decoded on different platforms.

d. Verilog: Right-click test sm.v:105 and select Expand All from popup menu. This
expands the hierarchy of test sm.v:105 and displays the functions that call it
(Figure 11-4).

VHDL : Right-click test_sm.vhd: 203 and select Expand All from popup menu. This
expands the hierarchy of test sm.vhd: 203 and displays the functions that call it.

Questa SV/AFV Tutorial, v6.4c 135

Analyzing Performance With The Profiler
View Profile Details

Figure 11-4. Expand the Hierarchical Function Call Tree

R
"IName |Under{raw}|1n{raw} |Lln|:|er{°.fo]| |In{°.f-:-]l |°.f-:-F‘arent ||
=

= Tcl_DoCneEvent [atad 0 50.4% 0.0% 0%
Tel_wWaitForEvent =3 61 45.2% 45, 2% Q0%
TclpHasSockets 3 3 2.2% 2.2% 4%
—} Tol_DeleteTimerHandler 3 0 2.2% 0.0% 4%
Tel_zekTime 3 3 2.2% 2.2% 100%%
=& T3 17 = 12.6% 3.7% 16%:
= Tel_DoCneEvent 11 0 8.1% 0.0% B5%s
Tel_waitForEvent 11 11 8.1% 8.1% 100%%
kesk_srm. w92 3 3 2.2% 2.2% 3%

I Ranked l Design Units I Call Tree | Structural I EIE

4. View the source code of aline that isusing alot of simulation time.

a. Verilog: Double-click test_sm.v:105. The Source window opensin the MDI frame
with line 105 displayed (Figure 11-5).

VHDL : Double-click test_sm.vhd: 203. The Source window opensin the MDI frame
with line 203 displayed.

Figure 11-5. The Source Window Showing a Line from the Profile Data

m C:4T utorial/examplestutonialsenlogAprofiler ftezt_zm. v
ln # -
102 always @(posedge clk)
103 outof = #5 out wire; // put ocutput in register
104
105 always @ (ocutof) // any change of outef
106 i rfoutef = 5h", cutof); =
1a7
108 integer 1i; -

I8 3

M wave | |h] test_smv I ﬂ_?'|

View Profile Detalils

The Profile Details pane increases visibility into simulation performance. Right-clicking any
function in the Ranked or Call Tree views in the Profile pane opens a popup menu that includes
a Function Usage selection. When you select Function Usage, the Profile Detail s pane opens
and displays all instances that use the selected function.

136 Questa SV/AFV Tutorial, v6.4c

Analyzing Performance With The Profiler
Filtering and Saving the Data

1. View the Profile Details of afunction in the Call Tree view.

a. Right-click the Tcl_WaitForEvent function and select Function Usage from the
popup menu.

The Profile Details pane displays all instances using function Tcl_WaitFor Event
(Figure 11-6). The statistical performance data show how much simulation timeis
used by Tcl_Close in each instance.

Figure 11-6. Profile Details of the Function Tcl_Close

Profile Details

Instances using funckion: Tel_WaitForEvent

‘l"lr'-.lame |Lln|:|er|{raw]| |In{raw]| |Lln|:|er|{°f.:.]| |In(%]| "
ol ftest_sm Gl = 45, 2% 45.2%:
Bl test_smjsm_seqdfsm_0 11 11 8.1% 8.1%

When you right-click a selected function or instance in the Structural pane, the popup menu
displays either a Function Usage selection or an Instance Usage selection, depending on the
object selected.

1. View the Profile Details of an instance in the Structural view.
a. Select the Structural tab to change to the Structural view.
b. Right-click test_smand select Expand All from the popup menu.

c. Verilog: Right-click the sm 0 instance and select | nstance Usage from the popup
menu. The Profile Details shows all instances with the same definition as
ltest_sm/sm _seqO/sm O (Figure 11-7).

Figure 11-7. Profile Details of Function sm_0

Profile Detaily —M8M8M8¥ ™ NG

|nztances with zame definition az ftest_zmdzm_zeqldzm_0
'l"IName |L|nu:|er[raw] ||n[raw] |L|n|:|er[?é] ||n[3é] |
o Aest_smdsm_zeqldizn_0 15 15 a.3% 8.3%

VHDL: Right-click the dut instance and select | nstance Usage from the popup
menu. The Profile Details shows all instances with the same definition as
/test_sm/dut.

Filtering and Saving the Data

Asalast step, you will filter out lines that take less than 3% of the simulation time using the
Profiler toolbar, and then save the report data to atext file.

Questa SV/AFV Tutorial, v6.4c 137

Analyzing Performance With The Profiler
Filtering and Saving the Data

1. Filter linesthat take less than 3% of the simulation time.
a. Click the Call Treetab of the Profile pane.
b. Change the Under (%) field to 3 (Figure 11-8).

Figure 11-8. The Profiler Toolbar

| | s oEA 00 v

If you do not see these toolbar buttons, right-click in a blank area of the toolbar and
select Profile.

c. Click the Refresh Profile Data button. | €

QuestaSim filters the list to show only those lines that take 3% or more of the
simulation time (Figure 11-9).

Figure 11-9. The Filtered Profile Data

'l"ll"-.lame |Under{raw}|ln(raw} |Lln|:|er|:°.-"o]| |In{°.-"o:l |°.-"-:~F‘arent | |
——kest_sm.vi105 g5 17 63, 0% 12.6% FE%a
=} Tel_DoCneEvent it] 50, 4% 0.0% 0%
Tel_twaitForEvent 61 Bl 45, 2% 45, 2% 0%
——sm.wiF3 17 5 12.6% 3.7% 16%
=} Tcl_DoCneEvent 11] 8.1% 0.0% 65%:
Tcl_WaitForEvent 11 11 G3.1% 8.1% 100

I Ranked l Design Units I Call Tree I Skructural I EIE

2. Savethereport.

a. Click thesaveicon inthe Profiler toolbar. | [&

b. Inthe Profile Report dialog (Figure 11-10), select the Call Tree Type.

138 Questa SV/AFV Tutorial, v6.4c

Analyzing Performance With The Profiler
Filtering and Saving the Data

Figure 11-10. The Profile Report Dialog

Profile Repork x|

~Type —Performance [Memory data
& Call Tree
i~ Ranked
~ an {* Default {data collected)
Skruckural
s " Performance only
Fook{opk): I

" Memaory only

[T Include funckion call hisrarche Y T

[T sSpecify structure level

R

= Callers and Callees

—Cutoff percent

Funickion: I

" Funckion ko instance

Funckion; I " Defaulk (D%

. e
i~ Instances using same definition " Specify I 3 EI

Instance: I

Cakpuk
™ write ta transcript
1+ write ko file Iu:alltree. rp Browse. ..
v “iew File
(0] 4 | Cancel |

In the Performance/Memory data section select Default (data collected).

e o

Specify the Cutoff percent as 3%.
Select Writeto file and type calltree.rpt in the file name field.

@

f. View fileis selected by default when you select Writeto file. Leave it selected.
g. Click OK.
The calltree.rpt report file will open automatically in Notepad (Figure 11-11).

Questa SV/AFV Tutorial, v6.4c 139

Analyzing Performance With The Profiler
Filtering and Saving the Data

Figure 11-11. The calltree.rpt Report

=

File Edit Window

£ callkree.rpt |

vainm 6.4 Beta 1 S3imulator 2005.04 Apr & 2008
Platform: winiZ
Calltree profile generated Wed ipr 09 13:10:09 2003
Mimber of samples: 135
Nunbher of samples in user code: 109 [(81%)
Cutoff percentage: 3%
Eeep unknouwn: 0
Collapse sections: O
Collect callstacks: O
Memory trim height: 0O
Keep free: 1
Profile data: wsimk [(Model3im kernel)

Name Underiraw) In(raw)] Under(%) In(%) %Parent
test_sm.w:l05 g5 17 3.0 1.6 T3
Tcl_DodneEvent ad a 50.4 n.a g
Teocl_WaitForEvent ol 6l 45.2 45.2 an
sm.w: 73 17 5 12.8 3.7 1A
Tel _DolneEwent 11 n g.1 n.a 65
Tel_WaitForEwent 11 11 g.1 g.1 100

calleree. rpk | ﬂﬂ

Y ou can also output this report from the command line using the profile report
command. See the QuestaSm Command Reference for details.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

Select Simulate > End Simulation. Click Yes.

140 Questa SV/AFV Tutorial, v6.4c

Chapter 12
Simulating With Code Coverage

Introduction

QuestaSim Code Coverage gives you graphical and report file feedback on which executable
statements, branches, conditions, and expressions in your source code have been executed. It
also measures bits of logic that have been toggled during execution.

Note
The functionality described in this lesson requires a coverage license feature in your

QuestaSim license file. Please contact your Mentor Graphics sales representative if you
currently do not have such afeature.

Design Files for this Lesson

The sample design for this lesson consists of afinite state machine which controls a behavioral
memory. The testbench test sm provides stimulus.

The QuestaSim installation comeswith Verilog and VHDL versions of thisdesign. Thefilesare
located in the following directories:

Verilog — <install_dir>/examples/tutorials/verilog/coverage
VHDL —<install_dir>/examples/tutorials/vhdl/coverage

This lesson uses the Verilog version in the examples. If you have a VHDL license, use the
VHDL version instead. When necessary, we distinguish between the Verilog and VHDL
versions of the design.

Related Reading
User's Manual Chapter: Code Coverage.

Compile the Design

Enabling Code Coverage is atwo step process. First, you identify which coverage statistics you
want and compile the design files. Second, you load the design and tell QuestaSim to produce
those statistics.

1. Create anew directory and copy thetutorial filesinto it.

Questa SV/AFV Tutorial, v6.4c 141

Simulating With Code Coverage

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/questasim/examples/tutorial s/verilog/coverage to the new directory.

If you have aVHDL license, copy thefilesin
<install_dir>/questasim/examples/tutorial s'vhdl/coverage instead.

2. Start QuestaSim and change to the exercise directory.

If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a. Typevsim at aUNIX shell prompt or use the QuestaSim icon in Windows.
If the Welcome to QuestaSim dialog appears, click Close.
b. Select File> Change Directory and change to the directory you created in step 1.
3. Create the working library.
a. Typevlib work at the QuestaSim> prompt.
4. Compilethe design files.

a. For Verilog— Typevlog -cover bcsxf sm.v sm_seq.v beh_sram.v test_sm.v at the
QuestaSim> prompt.

For VHDL — Type vcom -cover besxf sm.vhd sm_seq.vhd sm_sram.vhd
test_sm.vhd at the QuestaSim> prompt.

The -cover besxf argument instructs QuestaSim to collect branch, condition,
statement, extended toggle, and finite state machine coverage statistics. Refer to the
section Enabling Code Coverage in the User’s Manual for more information on the
available coverage types.

Load and Run the Design

1. Loadthedesign.

a. Enter vam -voptargs="+acc" -coveragetest_sm at the QuestaSim> prompt of the
Transcript pane.

The -voptar gs="+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note
By default, QuestaSim optimizations are performed on all designs (see Optimizing

Designs with vopt).

2. Run the simulation

a. Typerun 1 msat the VSIM> prompt.

142 Questa SV/AFV Tutorial, v6.4c

Simulating With Code Coverage

When you load a design with Code Coverage enabled, QuestaSim adds several columnsto the
Files and sim tabs in the Workspace (Figure 12-1). Y our results may not match those shown in
the figure.

Figure 12-1. Code Coverage Columns in the Main Window Workspace

> ———————]

|Specified path _ [Full path [Type [Stmt Count [Stmt Hits [Stmt % [Stoot Graph |
wsinm, wif i Tutarial...

S, S, i Tutorial, .. verilog 2z 12 z6.354 N |

SI_Se. v SI_Se. v i Tutorial, ., werilog 16 15 9370]

| beh_sram.w beh_sram.v C:fTutorial,.. werilog] 5 53.333]

1 test_sm.w kest_sm.v C:fTutorial,.. werilog 77 0 e0ee T
0 [— i
MLiI:urar';.f | &= sim | E Files | B Memories kil

By default, QuestaSim also displays three Code Coverage panes in the Main window:
* Missed Coverage

Select View > Coverage > Missed Cover age to open or close this pane. Displays the
selected file' s un-executed statements, branches, conditions, expressions and signals
that have not toggled (Figure 12-2). It also includes missed states and transitionsin
finite state machines.

Figure 12-2. Missed Coverage Pane

Missed Coverade - by instance

TIMisseu:I Stakements
—HyL] test_sm.w

—X 31 #
—X 31 into = { . ¥
—)(3z [[(pozeddge clk)
¥ 33 #
—){ 33 1into = data;
¥ 154 #
¥ 154 :

-I Skatemenk | Branch l Condition l Expression l Toagagle l FaM I ﬂil

* Instance Coverage

Select View > Coverage > I nstance Cover age to open or close this pane. Displays
statement, branch, condition, expression and toggle coverage statistics for each instance
in aflat, non-hierarchical view (Figure 12-3).

Questa SV/AFV Tutorial, v6.4c 143

Simulating With Code Coverage

Figure 12-3. Instance Coverage Pane

Inztance Coverage B
Strt % |Stmt araph | Branch count (Branch hitz |Branch miszez [Branch % |Branch araph | Con

1 90% : 7 1 87.5% D
3 90] 20 17 3 o5 |]
1 95.5% (] 14 13 1 929%

13 34.5% I |

B | »

» Details

Select View > Coverage > Details to open or close this pane. Shows coverage details
for the item selected in the Missed Coverage pane. Details can include truth tables for
conditions and expressions, or toggle details (Figure 12-4).

Figure 12-4. Details Pane
Detailz - el

Ingtance: Jtest_sm
figmal: into
Node count: ZE

-x0: 71870

-¥1: 71876

Toggle Coverage: 3:d.358%
0f1 Coverage: 3d4.33%
Full Cowverage: 34.35%

Z Coverage: 34 353%

e Current Exclusions

Select View > Coverage > Current Exclusionsto open or closethis pane. Listsall files
and lines that are excluded from coverage statistics (Figure 12-5). See Excluding Lines
and Files from Coverage Statistics for more information.

Figure 12-5. Current Exclusions Pane

Current Escluzions 2 el

am.v [entire file]
test_sm.y
Line: 74

test_sm.v [pragma)
-} Lines: 25-29
Line: 25
Line: 26
Lire: 27
Line: 23

144 Questa SV/AFV Tutorial, v6.4c

Simulating With Code Coverage
Coverage Statistics in the Main window

All coverage panes can be re-sized, rearranged, and undocked to make the data more easily
viewable. To resize a pane, click-and-drag on the top or bottom border. To move a pane, click-
and-drag on the double-line to the right of the pane name. To undock a pane you can select it
then drag it out of the Main window, or you can click the Dock/Undock Pane button in the
header bar (top right). To redock the pane, click the Dock/Undock Pane button again.

We will look at these panes more closely in the next exercise. For complete details on each
pane, Refer to the section Code Coverage Panes in the User’s Manual.

Coverage Statistics in the Main window

Let’stake alook at the data in these various panes.

1. View statisticsin the Workspace pane.

a. Select the sim tab in the Workspace and scroll to the right.

Coverage statistics are shown for each object in the design.

b. Select the Filestab in the Workspace and scroll to the right.

Each file in the design shows summary statistics for statements, branches,

conditions, expressions, and states.

c. Click the right-mouse button on any column name and select an object from the list
(Figure 12-6).

Figure 12-6. Right-click a Column Heading to Show Column List

Branch %

% G0al instance % Goal botal v
v Branch count v Branch graph v Branch hits
v Branch misses v Condikion < v Condition graph
v Condition hits v Condikion misses v Condikion rows
v Design unit v Design unit type W Expression %%
v Expression graph v Expression hits v Expression misses
v Expression rows v FEC Condition %% v FEC Condition graph
v FEC Condition hits v FEC Condition misses v FEC Condition rows
v FEC Expression % v FEC Expression graph v FEC Expression hits
v FEC Expression misses v FEC Expression raws Instance coverage
v State 9k v State graph v Skate hits
v Stake misses v Skates W Skt %%
v Stmt counk v Skt graph v Stk hiks
v Stk misses v Toggle %% v Toggle hits
v Toggle misses v Toggle nodes v Toggled graph
Tokal coverage v Transition % v Transition graph
¥ Transition hits v Transition misses v Transitions
v isibility

Questa SV/AFV Tutorial, v6.4c

145

Simulating With Code Coverage
Coverage Statistics in the Source Window

All checked columns are displayed. Unchecked columns are hidden. The status of
every column, whether displayed or hidden, is persistent between invocations of
QuestaSim.

2. View gtatisticsin the Missed Coverage pane (see Figure 12-2 above).

a. Select different files from the Files tab of the Workspace. The Missed Coverage
pane updates to show statistics for the selected file.

b. Select any entry in the Statement tab to display that line in the Source window.
3. View dtatistics in the Details pane.
a. Select the Toggle tab in the Missed Coverage pane.

If the Toggle tab isn’t visible, you can do one of two things: 1) widen the pane by
clicking-and-dragging on the pane border; 2) if your mouse has a middle button,
click-and-drag the tabs with the middle mouse button.

b. Select any object in the Toggletab to see detailsin the Details pane (see Figure 12-4
above).

4. View instance coverage statistics.

The Instance Coverage pane displays coverage statistics for each instance in aflat, non-
hierarchical view (see Figure 12-3 above). Select any instance in the Instance Coverage
pane to see its source code displayed in the Source window.

Coverage Statistics in the Source Window

In the previous section you saw that the Source window and the Main window coverage panes
arelinked. Y ou can select objectsin the Main window panesto view the underlying source code
in the Source window. Furthermore, the Source window contains statistics of its own.

1. View coverage statistics for beh_sramin the Source window.
a. Select beh_sram.vin the Files tab of the Workspace.

In the Statement tab of the Missed Coverage pane, expand beh _sram.v if necessary
and select line 48.

b. The Source window opensin the MDI frame with line 48 highlighted momentarily
(Figure 12-7). Highlighting will disappear after afew seconds.

146 Questa SV/AFV Tutorial, v6.4c

Simulating With Code Coverage
Coverage Statistics in the Source Window

Figure 12-7. Coverage Statistics in the Source Window

|h] C:fTutorialfexamples/tukarials fvetilogf coverage/beh_sram.w - by file HH A =
Hits | BC | ne | | =
9372 4z dat r <= #I-I_DLY mem[addr] ;
SOo000 937Yet 40e6z24f 45 if ('wr_]
9376 34 mem[addr] <= #I-I_DLY dat;
45
46 end
47 else
1 oc 1t 45 [-
] 43 fdisplavyijistime,, "Error: Simul ;I
J | i
|h] Eest_sm.v Ell:ueh_sram.vl piE

c. Switch to the Source window.

The table below describes the various icons.

Table 12-1. Coverage Icons in the Source Window

Icon Description

green checkmark | indicates a statement that has been executed

red X indicates that a statement in that line has not
been executed (zero hits)

green E indicates aline that has been excluded from
code coverage statistics

red X+ or Xg indicates that a true or false branch
(respectively) of aconditional statement has
not been executed

d. Select Tools> Code Coverage > Show coverage numbers.

Theicons are replaced by execution counts on every line. An ellipsis(...) is

displayed whenever there are multiple statements on the line. Hover the mouse

pointer over a statement to see the count for that statement.

Questa SV/AFV Tutorial, v6.4c

147

Simulating With Code Coverage
Toggle Statistics in the Objects Pane

Figure 12-8. Coverage Numbers Shown by Hovering the Mouse Pointer

m ;i Tukorialexamples tutorials/verilog/coverage/beh_sram. - by File
Hits BiZ Ln# =
9372 42 dat r <= #H_DL“E mwem [addr] ;
Soooo 9376t 40624f 43 if (lwr]
Q376 44 mwem[addr] <= #M DLY dat:
45
46 ernd
47 else J
1 Ot 1f 48 if ({rd || wr_) == 0]
] 49 fdisplayifstime,, "Error: Simul LI
l | 2
[h] tesk_sm.v | |h] beh_srarm. | ﬂﬂ

e. Select Tools> Code Coverage > Show cover age number s again to uncheck the
selection and return to icon display.

Toggle Statistics in the Objects Pane

Toggle coverage counts each time alogic node transitions from one state to another. Earlier in
the lesson you enabled six-state toggle coverage by using the -cover x argument with the vliog
or vcom command. Refer to the section Toggle Coverage in the User’s Manual for more
information.

1. View toggle datain the Objects pane of the Main window.
a Selecttest sminthe sim tab of the Workspace.

b. If the Objects paneisn’'t open already, select View > Objects. Scroll to the right to
see the various toggle coverage columns, or undock and expand the pane until all
columns show (Figure 12-9).

148 Questa SV/AFV Tutorial, v6.4c

Simulating With Code Coverage
Excluding Lines and Files from Coverage Statistics

Figure 12-9. Toggle Coverage in the Objects Pane

File Edit “iew Add Tools Window

J Containe: | ¢ J Bz ¢4 5 5

aoo. . ray Internal
0ooo.. Pac
]
0 ay Internal
Internal
dat nooo0.. et Internal
addr 00oo, Internal

) f= 0 T — —L T

||:| ap il | riterh -Ell

ay Internal
Internal
Internal

o= o

Excluding Lines and Files from Coverage
Statistics

QuestaSim allows you to exclude lines and files from code coverage statistics. Y ou can set
exclusions with the GUI, with atext file called an "exclusion filter file", or with "pragmas’ in
your source code. Pragmas are statements that instruct QuestaSim to not collect statistics for the
bracketed code. Refer to the section Excluding Objects from Coverage in the User’s Manual for
more details on exclusion filter files and pragmas.

1. Display the Current Exclusions pane if necessary.
a. Select View > Coverage > Current Exclusions.
2. Exclude aline viathe Missed Coverage pane.

a. Right click aline in the Missed Coverage pane and select Exclude Selection. (You
can also exclude the selection for the current instance only by selecting Exclude
Selection For Instance <inst_name>.) The line will appear in the Current Exclusions
pane.

3. Excludean entirefile.

a. IntheFilestab of the Workspace, locate sm.v (or sm.vhd if you are using the VHDL
example).

b. Right-click the file name and select Code Coverage > Exclude Selected File
(Figure 12-10).

Questa SV/AFV Tutorial, v6.4c 149

Simulating With Code Coverage
Creating Code Coverage Reports

Figure 12-10. Excluding a File Using Menus in the Workspace

ﬂFiIename |Fu|||:|ath |T_I,I|:ue |Stmt Count |Stmt Hits |Stmt 4 |Stmt Graph
Fm_zeq.y am_seq.yw v file 21 20 95238
be Yigw SoLrce beh_sra.. v file 3 2 E8.893
tes Sawe List.. test smyv v file 1 7390123

Code Coverage * Code Coverage Reports...

Exclude Selected File

Copy
; Clear Code Coverage Data
Properties. .. T
| | ;I
I} tierary | &3 sim | = Fies | 4l

Thefileis added to the Current Exclusions pane.
4. Cancel the exclusion of sm.v.

a. Right-click sm.vin the Current Exclusions pane and select Cancel Selected
Exclusions.

Creating Code Coverage Reports

Y ou can create textual or HTML reports on coverage stati stics using menu selections in the GUI
or by entering commands in the Transcript pane. Y ou can also create a textual report of
coverage exclusions using menu selections.

To create textual coverage reports viathe GUI, do one of the following:

» Select Tools> Coverage Report > Text from the Main window menubar.

* Right-click any object in the sim or Files tab of the Workspace and select Code
Coverage > Code Cover age Reports from the popup context menu.

» Right-click any object in the Instance Coverage pane and select Code cover agereports
from the popup context menu. Y ou may also select Instance Coverage > Code
cover agereportsfrom the Main window menu bar when the Instance Coverage paneis
active.

Thiswill open the Coverage Text Report dialog (Figure 12-11) where you can elect to report
on:

o dlfiles,
o dl instances,

o all design units,

150 Questa SV/AFV Tutorial, v6.4c

Simulating With Code Coverage
Creating Code Coverage Reports

o gpecified design unit(s),
o specified instance(s), or
o gpecified source file(s).

QuestaSim creates afile (named report.txt by default) in the current directory and immediately
display the report in the Notepad text viewer/editor included with the product.

Figure 12-11. Coverage Text Report Dialog

Coverage Text Heport !EE

~Report kind

Repart on |l instances -l

RN | Browse, ..

File: Marne | Browse. ..

Instance Namel Browse. ..
[T Recursive I Depth I—

—Werbosiky —iCoverage Type
& Defaulk ¥ Assertions
kokals per instance DL File ¥ Covergroups
" Details ¥ Cover directives
I all Toggles ¥ Code coverage
I cCondition/Expression Tables ¥ all code coverage
[T covergroup Options ¥ Eranches
¥ source Annotation ¥ conditions
" Total Coverage ¥ Expressions
¥ Statements
~Oukput Mode
¥ Fsms
™ #ML Formak ¥ Togoles

~Report Pathname

|rep|:|rt.t:-ct Erowse, ..

[C append ta file

fdvanced Optiu:uns...| oK | Cancel|

To create a coverage report in HTML, select Tools > Coverage Report > HTML from the
Main window menu bar. This opens the Coverage HTML Report dialog where you can
designate an output directory path for the HTML report.

Questa SV/AFV Tutorial, v6.4c 151

Simulating With Code Coverage
Creating Code Coverage Reports

Figure 12-12. Coverage HTML Report Dialog

Coverage HTML Repork El
—Colarization Threshold Cther Options

Low |50 [~ werbose

High [a0 [Mo Source Code

~HTML Qukput Direckory Path

|-:Dvhtmlrep|:|rt Browse., ..

V¥ “iew report in browser when complete

Restaore Defaulk

i Cancel

By default, the coverage report command will produce textual files unlessthe -html argument is
used. Y ou can display textua reports in the Notepad text viewer/editor included with the
product by using the notepad <filename> command.

To create a coverage exclusionsreport, select Tools> Coverage Report > Exclusionsfrom the
Main window menubar. This opens the Coverage Exclusions Report dialog where you can el ect
to show only pragma exclusions, only user defined exclusions, or both.

Figure 12-13. Coverage Exclusions Report Dialog

Coverage Exclusion Report El

~Exclusion Type

¥ Pragma Exclusions ¥ User Defined Exclusions

~Report Pathname

|Exclusinn. dal Browse, ..

[T append ta file

Ik Cancel

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Typequit -sim at the VSIM> prompt.

152 Questa SV/AFV Tutorial, v6.4c

Chapter 13
Debugging With PSL Assertions

Introduction

Using assertionsin your HDL code increases visibility into your design and improves
verification productivity. QuestaSim supports Property Specification Language (PSL)
assertions for use in dynamic simulation verification. These assertions are simple statements of
design intent that declare design or interface assumptions.

This lesson will familiarize you with the use of PSL assertionsin QuestaSim. Y ou will run a
simulation with and without assertions enabled so you can see how much easier it isto debug
with assertions. After running the simulation with assertions, you will use the QuestaSim
debugging environment to locate a problem with the design.

Design Files for this Lesson

The sample design for this lesson uses a DRAM behavioral model and a self-checking
testbench. The DRAM controller interfaces between the system processor and the DRAM and
must be periodically refreshed in order to provide read, write, and refresh memory operations.
Refresh operations have priority over other operations, but a refresh will not preempt an in-
process operation.

The QuestaSim installation comeswith Verilog and VHDL versions of thisdesign. Thefilesare
located in the following directories:

Verilog —<install_dir>/examples/pdl/verilog/modeling/dram_controller
VHDL —<install_dir>/examples/psl/vhdl/modeling/dram_controller

This lesson uses the Verilog version for the exercises. If you have aVHDL license, use the
VHDL version instead.

Y ou can embed assertions within your code or supply them in a separate file. This example
design uses an external file.

Related Reading

User's Manual Chapter: Verification with Assertions and Cover Directives.

Compile the Example Design

In this exercise you will use aDO file to compile the design.

Questa SV/AFV Tutorial, v6.4c 153

Debugging With PSL Assertions
Load and Run Without Assertions

1. Create anew directory and copy the lesson filesinto it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/examples/pd/verilog/modeling/dram_controller to the new directory.

If you have aVHDL license, copy thefilesin
<install_dir>/examples/psl/vhdl/modeling/dram_controller instead.

2. Start QuestaSim and change to the exercise directory you created.

If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a. To start QuestaSim, type vsim at a UNIX shell prompt or use the QuestaSimiconin
Windows.

If the Welcome to QuestaSim dialog appears, click Close.
b. Select File> Change Directory and change to the directory you created in step 1.
3. Executethelesson DO file.
a. Typedo compile.do at the command prompt.
The DO file does the following:
* Createstheworking library
o Compilesthe design files and assertions

Feel free to open the DO file and look at its contents.

Load and Run Without Assertions

1. Load the design without assertions.
a. Typevsim -voptargs="+acc" -nopd tb at the command prompt.

The -voptargs="+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note
D By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

The -nopsl argument instructs the compiler to ignore PSL assertions.

2. Run the simulation.

a. Typerun -all at the command prompt or click the Run -All icon.

154 Questa SV/AFV Tutorial, v6.4c

Debugging With PSL Assertions
Using Assertions to Speed Debugging

Verilog: The smulation reports an error at 267400 ns and stops on line 266 of the
dramcon_sim.v module.

VHDL: The smulation reports an error at 246800 ns and stops on line 135 of the
dramcon_sim.vhd entity.

The ERROR message indicates that the controller is not working because avalue
read from memory does not match the expected value (Figure 13-1).

Figure 13-1. Transcript After Running Simulation Without Assertions

Tranzcript

Sir waim th -hopsl

wzim -nopzl th

Loading work.tb

Loading wark. dram_cantral
Loading wark. dram

WSl 4x un-all

Resetiawariing

#

#ERROR at time 267400

Contraller iz not warking

H data written = 01

fe dataread =80

#

Break at dramcon_sim.v line 266

WS B wsim tb -nopzl s

L3

To debug the error, you might first examine the simulation waveforms and look for
al writesto the memory location. Y ou might also check the data on the bus and the
actual memory contents at the location after each write. If that did not identify the
problem, you might then check all refresh cycles to determineif arefresh corrupted
the memory location.

Quite possibly, all of these debugging activities would be required, depending on
one’ s skill (or luck) in determining the most likely cause of the error. Any way you
look at it, it is atedious exercise.

3. Endthe simulation.

a. Typequit -sim at the command prompt to end this simulation.

Using Assertions to Speed Debugging

To see how assertions can speed debugging, reload the design with assertion failure tracking
enabled.

1. Reload the design.

a. Typevsim -voptargs="-+acc" -assertdebug tb at the command prompt.

Questa SV/AFV Tutorial, v6.4c 155

Debugging With PSL Assertions
Using Assertions to Speed Debugging

The” +acc” portion of the -voptar gs argument preserves PSL assertion data,
enabling pass count logging in the Transcript window and assertion viewing in the
Wave window. If you do not specify +acc, the tool only transcribes assertion failure
messages and reports only failure counts in the assertion browser.

+acc also enables the complete functionality of vsim -assertdebug. The
-asser tdebug option gives you another tool for debugging failed assertions, aswe' |l
see in amoment.

. Execute the lesson DO file.

a. Typedo sim.do at the command prompt.
The DO file does the following:
* Opensthe Assertions tab of the Analysis pane and displays all assertions
* Opens a Source window
* Addssignalsto the Wave window

Y ou may need to resize and move the panes to better view the data.

. Set all assertionsto Break on Failures.

a. Select the Analysis pane to make it active.

b. Select Assertions> Configure from the main menu to open the Configure
assertions dialog (Figure 13-2).

156

Questa SV/AFV Tutorial, v6.4c

Debugging With PSL Assertions
Using Assertions to Speed Debugging

f.
g.

Figure 13-2. Change Assertions Dialog

Configure assertions El

— Change on
" Specific instance
Inztance Mame Isim:.-"interleaver_tester Browse...
[T Fecursive
e Al azzertions
— Failurez — Pazzes
— Assertions—————— — Azzertions
f* Enable {* Enable
" Dizable i~ Dizable
— Loggng——— —Logaging
i On * Op
O = 0ff
— Limit — Limit
" Limited £~ Limited
I-'I Times I-'I Times
& Unlimited = Unlimited
—Action
i Cortinue
{* Ereak
i Exit
OK | Cancel | Apply |

In the Change on section, select All assertions.

In the Failures Assertions section, select Enable.

In the Failures Action section, select Break.

This causes the simulation to break (stop) on any failed assertion.

In the Passes L ogging section, select On.

Click the OK button to accept your selections and close the dialog.

The command line equivalents for these actions are as follows:

assertion fail -action break -r *
assertion pass -log on -r *

Questa SV/AFV Tutorial, v6.4c

157

Debugging With PSL Assertions
Using Assertions to Speed Debugging

4. Add assertion signals to the Wave window

a
b.

C.

a

Select all assertions in the Assertions tab of the Analysis pane.
Right-click on the selected assertions to open a popup menu.
Select Add Wave > Objectsin Design.

Scroll to the bottom of the Wave window and you will see the assertion signals
(denoted by magenta triangles).

5. Run the simulation.

Typerun -all at the command prompt.

Verilog: The Main window transcript shows that the assert_check _refresh assertion
inthe dram _cntrl.pd filefailed at 3100 ns. The simulation is stopped at that time.
Note that with no assertions, the testbench did not report afailure until 267,400 ns,
over 80x the simulation time required for afailure to be reported with assertions.

VHDL: The Main window transcript shows that the assert_check refresh assertion
inthe dram _cntrl.pdl file failed at 3800 ns. The simulation is stopped at that time.
Note that with no assertions, the testbench did not report a failure until 246,800 ns,
over 60x the simulation time required for afailure to be reported with assertions.

The blue arrow in the Source window shows where the simulation stopped - at the
check_refresh assertion on line 24 of dram_cntrl.psl.

The Wave window displays ared triangle at the point of the simulation break and
shows "FAIL" in the values column of the assert_check refresh assert directive
(Figure 13-3). Green triangles indicate assertion passes.

Figure 13-3. Assertion Failure Indicated in Wave Window

Messages

INACTIVE
ACTINVE
ACTINVE

FAIL
ACTIVE
ACTIVE

INACTIVE

l @dramcnn_sim.v l @dram_cntrl.psl I Mwave |

; L4
3100 ns
Cursor 1
43

158

Questa SV/AFV Tutorial, v6.4c

Debugging With PSL Assertions
Using Assertions to Speed Debugging

The blue sections of the assert directive waveforms indicate inactive directives;
green indicates active directives.

6. View the assertion failurein the Assertion Debug pane of the Wave window.

Since you used the -asser tdebug argument with the vsim command when you invoked
the simulator, you can view the details of assertion failuresin the Assertion Debug pane
of the Wave window.

a. Undock the Wave window.

b. Select View > Assertion Debug. The Assertion Debug pane appears at the bottom
of the Wave window, as shown in Figure 13-4.

c. Click thered triangle on the assert_check_refresh directive waveform (the red
triangle indicates a failed assert directive).

Figure 13-4. The Assertion Debug Pane Shows Failed Assertion Details

[T wave - default =10 x|

File Edit Wiew add Format Tools Window
[15R8 sw@o A% A als B @ o
| # &= (EF ond ELEIE | &0 & o @f|| & & lear

count Oifoo T 0oo [Y oo T Joo YIT

ref_count L0 SRS SEERSEIEINSERENINEREEENEnEN
efresh 1

IN&CTIVE
BCTIVE

SCTIVE
FAIL

ACTIVE
i 3 ACTIVE
aczzert rherk read THIAr TTWE

Ml how | Sl00ns
W Cursar 1 0 ns
I3 JKT 3 [N T

Directive Name Yalue Skart Time

Signals OF Interest Replicator Parame

ftbfenktlfassert_ check_refresh 2700 ns ftbfentrlfcas_
ftbfer
Jebfentel i k0
o | |
0 ns ko 3255 ns Mow: 3,100 ns Delka: 1 &

Questa SV/AFV Tutorial, v6.4c 159

Debugging With PSL Assertions
Debugging the Assertion Failure

The Signals of Interest column displays the signals responsible for the assertion
failure. Y ou can analyze these signals further in the Dataflow window by right-
clicking an assertion directive’ s waveform and selecting Show Driver s from the
popup menu.

7. View assertion failure in the Assertions tab of the Analysis pane.

The Assertions tab indicates a failure of assert_check refresh in the Failure Count
column (Figure 13-5).

Figure 13-5. Assertion failure indicated in the Analysis pane

Analysiz

"IName |Language |Failure |F'a$s |Failure Court |F'a$s Court |Failure Action |.-i'-.sserti|:|n Expressic
+hdk tblassert_ test_read response PSL enabled enabled] 0 break aszert{always {rose
+hdk Atblassert_test_wiite_responze PSL enabled enabled] 3 break aszert{always {rose
+hd Atblassert_check_as_deasserts PSL enabled enabled] 3 break aszert{always {rose
B/ Abfenbliassern_ check refresh PSL enabled enabled 1 0 break azzert{always {roze

_T_rE] AbdontilAE posedge clk)h
+HP] Abienbilicheck_refresh

+ha Abiontlfassert_refresh_rate PSL enabled enabled] 1 break aszert{always {rose
+hd Abdontdfassert_check_write PSL enabled enabled] 3 break aszert{abways {fell(z
+hd Abdontd/assert_check_read PSL enabled enabled] 0 break aszert{abways {fell(z

| |

X Assertions

Debugging the Assertion Failure

1. View the source code of the failed assertion.

[N

Verilog: The current line arrow points to the failed assertion on line 24 of the

dram _cntrl.pdl file (Figure 13-6). This assertion consists of checking the check_refresh
property, which is defined on lines 20-22. The property states that when the refresh
signal is active, then it will wait until the memory controller state goesto IDLE. The
longest aread or write should take is 14 cycles. If the controller isalready IDLE, then
thewait is O cycles. Once the controller isin IDLE state, then the refresh sequence
should start in the next cycle.

160 Questa SV/AFV Tutorial, v6.4c

Debugging With PSL Assertions
Debugging the Assertion Failure

Figure 13-6. Source Code for Failed Assertion

m C i fQuestasim_6. 3afexamples/psliverilogfmodeling/dr arm_controllerfdram_cntrl,psl

EF | ln # =
22 short fell(reset n));
23
24 B assert check refresh;
25
26 /f declare refresh rate check J
27 sequence signal refresh = {[*Z4]; roselirefresh|};
28 property refresh rate = always [{rose(reset_n) || rose
29 {signal refresh} abo
a0
31 assert refresh rate; ;I

1] | I
l |h] dramcan_sirm. v [L']dram_cntrl.psl | Mwave J ﬂﬂ

Therefresh _sequence (second line of the property) is defined on line 18. The key part of
the refresh protocol isthat we_n must be held high (write enable not active) for the
entire refresh cycle.

VHDL: The current line arrow points to the failed assertion on line 24 of the
dram_cntrl.psl file. The refresh_sequence (second line of the property) is defined on
line 20.

2. Check the Wave window to seeif the write enable signal, we_n, was held high through
both REF1 and REF?2 states.

a. Inthe Wave window, expand assert_check refresh to reveal all signals referenced
by the assertion.

b. Zoom and scroll the Wave window so you can see we_n and mem_state
(Figure 13-7).

Questa SV/AFV Tutorial, v6.4c 161

Debugging With PSL Assertions
Debugging the Assertion Failure

Figure 13-7. Examining we_n With Respect to mem_state

[T wave - default O] =|
File Edit Yew Add Format Tools Window
J = i En@ s J JEE B 3¢ | E‘iEI of

jf@m lflTnmjlilm “}F:&JJ]&T&Ef

Messages

assett_check_refresh

Skl
refresh 1
----- EFZ AT CAS E k. I:Z'LE !.EFl !.EFE'

gl

gl

3k0

Skl

o | [[0 "
3100 ns

Cursar 1 0ns

Hy b

| 2327 nsto 3141 ns | Mow: 3,100 ns Delta: 1

| [

Itiseasy to see that we_nishigh only during the REF1 state. It islow during REF2.
Let'sexaminewe_n further.
3. Examinewe_n in the Dataflow and Source windows.

a. Open the Dataflow window by selecting View > Dataflow (Main window) then
select the Dataflow window to make it active.

b. Select Dataflow > Dataflow Prefer ences > Options from the menus to open the
Dataflow Options dialog. If the Dataflow window is undocked, select Tools >
Options from the Dataflow window menus.

c. Uncheck the Show Hierarchy selection as shown in Figure 13-8 and click OK.

162 Questa SV/AFV Tutorial, v6.4c

Debugging With PSL Assertions
Debugging the Assertion Failure

Figure 13-8. Dataflow Options Dialog

Dataflow Options x|

General options] W arning optionz] ﬂﬂ

¥ Hide cells

V¥ Feep Dataflow

[Show Hierarchy

¥ Battom inout pins

[Dizable Sprout

[T Select equivalent nets
¥ Logrets

¥ Select Ervironment

¥ Automatic Add to wave

ak. | Cancel |

d. Dragwe_n from the Wave window to the Dataflow window.

Verilog: The Dataflow window shows that we_n isdriven by the #ASS GN#104
process, with inputs rw and mem_state (Figure 13-9). The values shown in yellow
are the values for each signal at the point at which the simulation stopped: 3100 ns.
We see that we _n is StO when mem_state is REF2. As noted above, we_n should be
St1. Thisisthe reason for the assertion failure.

Figure 13-9. Viewing we_n in the Dataflow Window

D‘E dakaflaw

[@dramcun_sim.v 1 @dram_cntrl.psl I ﬁdataﬂuw | ﬂ_?'l

VHDL: The Dataflow window shows that we _nis driven by the process at line 61,
which has inputs rw and mem_state. The values shown in yellow are the values for
each signal at the point at which the simulation stopped: 3800 ns. We see that we n
is StO when mem_state is REF2. As noted above, we_n should be St1. Thisisthe
reason for the assertion failure.

e. Double-click the process that driveswe _nin order to display its source codein the
Source window.

Questa SV/AFV Tutorial, v6.4c 163

Debugging With PSL Assertions
Debugging the Assertion Failure

Verilog: Looking at the Source window you will see that the current line arrow
points to line 104 of the dramcon_rtl.sv file (Figure 13-10). In thisline you can see
that the logic assigning we_n iswrong - it does not account for the REF2 state.

Figure 13-10. Finding the Bug in the Source Code

m i iQuestasSim_g. 3a/examples)psliverilog/modeling/dram_controller /dramcon_rkl, sw
EF | 1ln # -
102 /¢ Deassert we n high during refresh
103 “ifdef BUZ
104* aszign # LEL we n = rw | (mem state == REF1);
105 "else —
106 assign # DEL we n = rw | [wem state == REF1]
107 | [mem_state == REFZ);
108 “endif
M9 |
il I3
l |k] dramcan_sim. v 1 |h] dram_cntrl. ps| 1 ﬁdataﬂuw I |h] dramcan_rtl.sv | ﬂ_ﬂ

The code shows that the incorrect assignment is used for the example with the
correct assignment immediately below (lines 106-107) that will hold we_n high
through both states of the refresh cycle.

VHDL : Looking at the Source window you can seethat the current line arrow points
toline 61 of the dramcon_rtl.vhd file. In thisline you can see that the logic assigning
we_niswrong - it does not account for the REF2 state.

The code shows that the incorrect assignment is used for the example with the
correct assignment immediately below (line 65) that will hold we_n high through
both states of the refresh cycle.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Select Smulate> End Simulation. Click Yes.

164 Questa SV/AFV Tutorial, v6.4c

Chapter 14
SystemVerilog Assertions and
Functional Coverage

Introduction

In this lesson you will:

» simulate the design with assertion failure tracking disabled in order to note how long the
simulation runs before an error is reached

» rerun the smulation with assertion failure tracking enabled in order to see how quickly
assertion failures can help you locate errors and speed debugging

» usecover directivesand covergroups to cause testbench reactivity and enable functional
coverage capabilities

» create afunctional coverage report using the graphic interface.

Design Files for this Lesson

This lesson uses an interleaver design with SystemV erilog assert and cover directives and
SystemVerilog covergroups to gain a basic understanding of how functional verification
information is gathered and displayed in QuestaSim.

Thefilesfor theinterleaver design are located in
/<install_dir>/questasim/examples/tutorials/systemverilog/viog_dut.

Understanding the Interleaver Design

An interleaver scrambles the byte order of incoming datain order to aid error detection and
correction schemes such as Reed Solomon/Viterbi. In the design used for this lesson, the
incoming data consists of a sync byte (0xb8, 0x47) followed by 203 bytes of packet data. The
203 bytes consist of 187 bytes of data to which a Reed Solomon encoder has previously
appended 16 bytes of data.

Figure 14-1. Incoming Data
i 204 Bytes >

s 16 by
bﬂ: 187 bytes pay load data RS en'fiﬁe

Questa SV/AFV Tutorial, v6.4c 165

SystemVerilog Assertions and Functional Coverage

Theinterleaver has 12 levels numbered 0 to 11. Each level, except the first, can be conceptually
thought of as a FIFO shift register. The depth of each register is 17 greater than the previous
level. Thefirst level (level 0) has adepth of zero (0); level 1 hasadepth of 17; level 2, adepth
of 34, and so on. Level 12 has a depth of 187. The sync byte of the packet is routed through
level 0. When abyteisloaded into each level’ s FIFO shift register, the byte shifted out on the
corresponding level is output by the interleaver.

The FIFO shift registers are implemented using asingle 2K X8 RAM instead of actual registers.
The RAM isdivided into 11 different sections and each level has separate read and write
address registers. A state machine controls which level isbeing written to and read, and
determines which level’ s address registers are selected to drive the actual RAM address inputs.

A common block called rdy _acpt is used to receive and drive the interleaver datain (di) and
data out (do) ports, respectively. Therdy_acpt block implements a simple handshake protocaol.
When the device upstream from the interleaver drives datato it, the datais driven and the ready
signal (di_rdy) is asserted. The upstream block asserts the data along with itsrdy signal and
must leave them asserted until the downstream block assertsits accept (di_acpt) signal. In other
words, the dataisn't considered to have been transferred until both the rdy and acpt signals are
asserted on the rising edge of the clock. Both sides of the rdy_acpt block follow this handshake
protocol. The block diagram of the interleaver is shown in Figure 14-2.

Figure 14-2. Block Diagram of the Inteleaver
rdy_acyt
d[70] ™] | TFacHt p co[70]
dirdy —

do_rdy
_ L~ I » =,
di_acpt g do_acpt

|

2EZR
. Dial Frat EAD
Wite
Address
Poarters
EBrarches
1tm 11

Feal
Address
Portess
Branches
lthm 11

Interleaver
p| StteMxliead [
Contral —

ey WM
k. J ¥ ¢
|

166 Questa SV/AFV Tutorial, v6.4c

SystemVerilog Assertions and Functional Coverage

The Testbench

Figure 14-3 shows how the testbench components are connected. The stimulus generator
creates random data packets and sends them to the driver. Even though the testbench is module
based, the stimulus generator still creates packets that are transaction based (SV class). Thisis
the big advantage offered by the QuestaSim Advanced V erification Methodology (AVM) - it
allows you to take advantage of transaction level modeling (TLM) techniques without having to
convert your test environment to a complete object oriented programming environment.

Figure 14-3. Block Diagram of the Testbench

Scoreboard

1

Coverage

5

Stimulus :
Generator [1—#®C| Driver
Master .

Responder

The driver takes the TLM packets and converts them to pin-level signals. The driver also uses
randomization to vary the timing of the packets delivered to the device.

The monitors take the pin level activity of the DUT inputs and outputs and convert that activity
back to a transaction for use in the coverage collector and scoreboard.

The scoreboard contains a"golden” reference model of the interleaver that is then compared
against the actual output the device. Thereisalso afeedback loop from the scoreboard to the
stimulus generator to tell the stimulus generator when testing is complete.

The coverage collector accumulates functional coverage information to help determine when
testing is complete. It measures things like how many different delay values were used in the
delivery of packets.

Questa SV/AFV Tutorial, v6.4c 167

SystemVerilog Assertions and Functional Coverage
Run the Simulation without Assertions

Finally the responder (which is actually part of the driver in this testbench) provides the
handshaking ready/accept signals needed for packet delivery.

Related Reading
User’'s Manual Chapter: Verification with Functional Coverage.

Run the Simulation without Assertions

1. Create anew directory and copy the tutorial filesinto it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons).

Copy thefilesfrom /<install_dir>/examples/tutorials/systemverilog/viog_dut to the
new directory.

. Start QuestaSim if necessary.

a Typevsim at aUNIX shell prompt or use the QuestaSim icon in Windows.

Upon opening QuestaSim for the first time, you will see the Welcome to QuestaSim
dialog. Click Close.

b. Select File> Change Directory and change to the directory you created in step 1.

. Run the ssimulation with a.do file.

a. Enter do assert.do at the QuestaSim> prompt.

The assert.do file will compile and load the design, run the simulation without
assertions, then pause while you examine simulation results. (In Windows, you may
seea“Finish Vsim” dialog that will ask, “Are you sure you want to finish?’ Click
No.)

In amoment, you will enter aresume command to rerun the simulation with
assertions.

After the design loads, the first simulation runs until it reaches the $finish in the
top.sv module. At thispoint, a“Test Failed” message is displayed in the Transcript
pane as shown in Figure 14-4. The summary information showsthat 22 packets were
correctly received by the scoreboard. Thisis atypica message from a self-checking
testbench.

168

Questa SV/AFV Tutorial, v6.4c

SystemVerilog Assertions and Functional Coverage
Run the Simulation with Assertions

Figure 14-4. First Simulation Stops at Error

Transcripk
MUMEBER OF PACKETS CORRECTLY RECEIVED BY SCOREBOARD = 22
UPSTREAM MOMITOR AP PORT WRITE ID= 0 S¥MC=bg START= 488350 EMND= 506350

** MESSAGE: interleaver _score,svh{29) @ S06350: env.scoreboard [Upstream Packet Received by Scoreboard]
b 433350 S0a350

#

R *

g g *
b TEST FAILED *
RE *
gt # *

#

Individual Failure points recorded by:

*¥ hoke: $finish : bop.sv(25)

Time: S06370ns Ikeration: O Instance: ftop
#1

Break in Module top at kop. sy line 25

MACRO | Jassert.do PAUSED at line 24

YSIM{paused) = |

F l Transcripk I

el

At this point, you would normally generate waveforms for debugging the test
failure. But this information does not give a clear indication of the source of the
problem. Where do you start? This can be avery difficult problem to find unless you
have some debugging tools, such as assertions.

Run the Simulation with Assertions

1. Rerun the simulation with assertions.
a. Enter the resume command at the V SIM (paused)> prompt.
2. After the design loads, configure all assertionsto “Break on Failure.”

a. TheAssertionstab of the Analysis window should open. If it does not, select View >
Cover age > Assertions from the menus to open it.

Notice that the assertions are enabled for both Passes and Failures. This means that
both counts and visual indications in the Wave window will be maintained for
assertion Passes and Failures. It should be noted that this not the default behavior.
To get this behavior the ssimulation must be invoked with the vaim -assertdebug
switch, as we have donein this simulation. (This command is in the assert.do file)

b. Make sure none of the assertions are selected (Edit > Unselect All).

c. Click the header bar of the Analysis window (with the Assertions tab open) to make
it active. An “Assertions” menu selection will appear in the menu bar. (This assumes
the Analysis window is docked in the Main window.)

Questa SV/AFV Tutorial, v6.4c 169

SystemVerilog Assertions and Functional Coverage
Run the Simulation with Assertions

d.

Select Assertions > Configure. Thiswill open the Configure Assertions dialog box

(Figure 14-5).

Select All assertions in the Change On section.

Select Enable failures.
Set the Failures Action to Break.

Figure 14-5. Enabling Assertion Failure Tracking and Action

Configure assertions

x|

— Change on

™ Specific instance

In:r.ar'.-:er-l.ar.'.eI:" nietleaver_test

" Dizable

T Recursive
e Al assertions
Failures
bssertions

{+ Enable l

— Logaing
@ On
O

— Lirnit

" Limited

" Unlirited

Action
-

{* Break
" Euxit

I 3 Times

Pazses
Assertions

% Enable

" Disable

0K | _ Cancel |

Apply

h. Click OK to accept the changes and close the dialog.

The Failure column in the Assertions tab now shows assertion failure tracking
"enabled," and the Failure Action column shows "break" for all assertion failures

(Figure 14-6).

170

Questa SV/AFV Tutorial, v6.4c

SystemVerilog Assertions and Functional Coverage
Debugging with Assertions

Figure 14-6. Assertions Set to Break on Failure

|Failure |F‘ass |Failure Cu:uunt|F‘ass Zounk |.ﬁ.|:ti~.fe Zounk |.ﬁ.T'-.-' |Failure Action @ssertion Expression

enabled enabled 0 0 0 off break, gssert] @{posedge pir

enabled enabled 0 1] 0 off break assert @{posedge pir
enabled enabled 0 0 0 off break assert @{posedge pir
enabled enabled 0 1] 0 off break gssertl @{posedge clk
enabled enabled 0 0 0 off break, gssert] @{posedge clk
enabled enabled 0 0 0 off break, gssert] @{posedge clk
enabled enabled 0 0 0 off break, gssert] @{posedge clk
enabled enabled 0 0 0 off break, gssert] @{posedge clk
enabled enabled 0 1] n

aff break, gssert] @{posedge clk

The Transcript pane shows the command line equivalent of the actions you have just
performed:

assertion fail -action break -r *
3. Add all assertions to the Wave window

a. Select dl assertionsin the Assertionstab of the Analysiswindow and either drag and
drop them into the Wave window, or use the right mouse button to open a context
menu and select Add Wave > Selected Objects.

Figure 14-7. Assertions in Wave Window

INACTINVE
INACTINVE
IN&C
IN&C

IN&C
IN&C
IN&C

I |h] avm_repart. svh l Mwave I

Debugging with Assertions

Run the simulation and debug the assertion failure.

Questa SV/AFV Tutorial, v6.4c 171

SystemVerilog Assertions and Functional Coverage
Debugging with Assertions

1. Run the simulation with assertion failure tracking enabled.
a. Enter run -all at the QuestaSim prompt.
b. When the simulator stops, enter run 0.

The run 0 command is needed to print any assertion messages when the assertion
failure action is set to Break. The reason this happens is due to scheduling. The
"break" must occur in the active event queue. However, assertion messages are
scheduled in the observed region. The observed region islater in the time step. The
run 0 command takes you to the end of the time step.

2. Veify the output of the Transcript pane (Figure 14-8).

Notice that the assertion failure message gives an indication of the failing expression.
Thisfeatureis enabled when the -asser tdebug switch is used with the veim command at
invocation. (Thiscommand isin the assert.do file.)

Figure 14-8. Assertion Failure Message in the Transcript

Transcripk

MUMEBER. OF PACKETS CORRECTLY RECEIVED BY SCOREEOARD = 10 -

UPSTREAM MOMITOR AP PORT WRITE ID= 0 5YNC=ba 5TART= 166470 EMND=
175950

** MESSAGE: inkerleaver_score.svh{29) @ 175950 env,scoreboard [Upstream Packet Received

by Scoreboard] bS 166470 175950

¥ MESSAGE: interleaver _stimulus, swb{370 @ 175970 env. stimulus [Stimulus Generator sending

packet to Driver] 154

** Moke: Requesting simulation stop on asserkion Failure

Time: 175990 ns Scope: [ftopfdut)fifo File: fifo_shift_ram.w Line; 44

Simulation stop requested.

VSIM 7> run 0

& ¥ Error: fssertion error,

Time: 175990 ns Started: 175970 ns Scope: top.dut.fifo File: fifo_shift_ram.w Line: 44 Expr; ~

pushl10]28wmaddr[11]>=1536%2wadd[11]<=17z22

WoIM &=

F l Transcripk I

3. View the assertion failure in the Assertions tab of the Analysis pane.

E Ll

The failed assertion is highlighted and ' 1’ is displayed in the Failure Count column for
that assertion (Figure 14-9).

172 Questa SV/AFV Tutorial, v6.4c

SystemVerilog Assertions and Functional Coverage
Debugging with Assertions

Figure 14-9. Assertions Tab Shows Failure Count

-l
‘l"lr'-.lame _\|Language |Failure |F‘ass |Failure Cu:uunt|F'ass Zounk |.ﬁ.ctive Count =
+-2& ftopjdutififolassert_ram_write_check__7 SWA enabled enabled n 187 C
+- ftopjdutififolassert_ ram_write_check_ 5 SWA enabled enabled n 1587 C
+- Mtopldutififolassert_ ram_write_check_ 9 SvA enabled enabled n 187 C
B A top/dutififolassert_ ram_write_check_ 10544 enabled enabled 1 [
+&% ftopipins_iffassert__hs_chk i) enabled enabled 1] 3100 C
4% ftopjpins_iffassert__hs_chk__1 aa enabled enabled 1] 4545 z
+g& ftopfpins_iffdi_data_hold aWa enabled enabled 1] 299 C
< |]

ssertions | L& Cover Directives overgraups

-l_\;:u b A Cover Directi |§]c group 43

4. Examinethefifo_shift_ram.v source code view. Thefifo_shift_ram.vtab should be open,
as shown in (Figure 14-10).

The simulation breaks on line 44 of thefifo_shift_ram.v module because the assertion on
that line has failed. A blue arrow in the Source window points to the assertion.

Figure 14-10. Source Pane Pointer Shows Where Simulation Stopped

41 assert property f(ram write check(push[7], waddr[3], 11'4765,

42 assert property f(ram write check(push[8], waddr[2], 1i'd10z24,

43 asgert property (ram write check(push[9], waddr[10], 11'd1lz350,

44 ﬁ assgert property (ram write check(push[10], waddr[11], 11'd1l536,

45

46 A# Werify that the proper level RAM address iz selected

Aam A A s TIAM — Ao e o rrddlidan e i, T, e e e h

J | N

lﬁ]avm_repu:urt.svh l ﬂwave [mfifu_shift_ram.v | ﬂﬂ

The parameterized property definition starts on line 29.

a. Inthefifo_shift_ram.v source code view, scroll to the property definition that starts
on line 29.

Example 14-1. Assertion Property Definition

28 property ram write check (we, wadde, lorange, hirange} ;

a0 Ef{pozedge clk) we |=> |(addra == waddr £& weddr > lorange £& waddr <= hirange) ##1
: ['we £& waddr >= lorange &é waddr <= hirange));

32 endproperty

The property states that whenever we (push[10]) is asserted, in the same cycle:

» theram address bus, addra should be equal to the write address bus for level 11
(waddr[11])

e and, waddr[11] should be within the range of 1536 to 1722.

Questa SV/AFV Tutorial, v6.4c 173

SystemVerilog Assertions and Functional Coverage
Debugging with Assertions

In the next cycle:
» we should be de-asserted,
e and, the next value of waddr[11] should still be within the range 1536 to 1722.
5. Click the wave tab to view the assertion failure in the Wave window.
a. Scroll totheassert_ram write_check 10 assertion.

The inverted red triangle indicates an assertion failure (Figure 14-11).

Figure 14-11. The Inverted Red Triangle Indicates an Assertion Failure

m wave - defaulk

INACTIVE

INACTIVE
FAIL
INACTIVE
START

di_data_hold INACTIVE
do_data_hold INACTIVE

!
Mow [241310ns
Cursor 1
48]

Hil His

I |h] avrm_repork.svh l Mwave | |h] Fifia_shift_ram. I

The green "midline" indicates where the assertion is active while the low blue line
indicates where the assertion is inactive. Blue squares indicate where assertion
threads start. Green triangles indicate assertion passes. Passes are only displayed
when the -asser tdebug switch for the vsim command is used at invocation (see the
assert.dofile).

b. Expand theassert ram write check 10 assertion (click the + sign next to it) in the
wave window and zoom in.

c. Changetheradix of addra and waddr to “Unsigned” by selecting both signals, right-
clicking the selected signals to open a popup menu, then selecting Radix >
Unsigned from the popup menu (Figure 14-12).

174 Questa SV/AFV Tutorial, v6.4c

SystemVerilog Assertions and Functional Coverage
Debugging with Assertions

Figure 14-12. Setting the Radix

Object Dedlaration 0 e
Wiew Gsserkian
Cover Mireckive Yiew

: — Symbolic
di_data_h

— Format r Binary
B4 do_data_| Octal
Lk ZrklE .
Decimal
Copy Znkl-C
Past Znkl-4
Dals tE r Hexadecigl
e ASCIT il
Group. .. Defaulk L
| 'hlavm reoort.svt - T

Asyou can seein Figure 14-13, the value of waddr[11] has incremented to 1723
which isout of the allowable address range. Remember, in the Transcript message
for the assertion violation, the failing expression indicated that waddr[11] was out of
range.

6. Examinethe waddr[11] signal in the Dataflow window.

a. Expand the waddr signal by clicking the + sign next to it, then scroll to the
waddr[11] signal (Figure 14-13).

Questa SV/AFV Tutorial, v6.4c 175

SystemVerilog Assertions and Functional Coverage
Debugging with Assertions

Figure 14-13. Diagnosing Assertion Failure in the Wave Window

m wave - default ERE

assert_ ram_write_check_ 10 (FAIL
clk Skl
push ooooooooD oooodooooo0 [[1100od,., Jooodo
addra 1]
waddr
(1]
(2]
(3]
(4]
(5]
(6]
(7]
[5]
[5]
[10] 1297
[11] 1723
_h AckiveCount 0
_me Mow 241310 ns
T Cursor 1 0ns

1 _>|4|| rlM

I@avm_repnrt.svh l Mwave | @Fifn_shift_ram.v I

= I

b. Double-click the waddr[11] waveform in the Wave window to open it in the
Dataflow window. The waddr[11] signal will be highlighted, as shown in
Figure 14-14, and the block shown isthe ALWAY S procedure that created the
waddr signal.

176 Questa SV/AFV Tutorial, v6.4c

SystemVerilog Assertions and Functional Coverage
Debugging with Assertions

Figure 14-14. The wadder11 Signal in the Dataflow Window

I:l-'E dataflow - default - default

i+« fifojwaddr[11] | 11010111011

11010111010

=

L4

Cursar 1 175979 ns I

1 3K 3 = = |

I @ kop. s l M Wave l @ Fifo_shift_ram.w I ﬁ dataflow | ﬂﬂ

c. Change theradix of /top/dut/fifo/waddr[11] in the Wave viewer portion of the

Dataflow window by right-clicking it and selecting Radix > Unsigned from the
popup menu. With the cursor at 241290 ns, as shown in Figure 14-14, we see that

the value of waddr[11] is 1723.

d. Select the symbol for the ALWAY S block in the Dataflow window. The
fifo_shift ram.v source code view will open automatically, with a blue arrow
pointing to the code for the ALWAY S block (Figure 14-15).

Questa SV/AFV Tutorial, v6.4c

177

SystemVerilog Assertions and Functional Coverage
Debugging with Assertions

Figure 14-15. Source Code for the ALWAYS Block

m ;i Tutorialfexamples tukarials) sy stermyerilog)+log_dut fifo_shift_ram.w
EP In # -~
131
132 ﬁ- Ialwagrs @ (posedge clk or negedge reset n)
133 if (!'reset_n]
134 hegin
135 waddr[1] <= 11'd0;
136 waddr[z] <= 11'd&4;
137 waddr[3] <= 11'dlz&:; |
135 waddr[4] <= 11'dzZ56;
139 waddr[5] <= 11'd3&54;
140 waddr[6] <= 11'dAS51Z:
141 waddr[7] <= 11'd&40;
14z waddr[8] <= 11'd768!;
143 waddr [9] <= 11'dl024;
144 waddr[10] <= 11'd1l:280;
145 waddr[11] <= 11'dl536;
146 end
=
K0 A
l |h] top.sy l ﬂwave [|h] Fifa_shift_rarn. rﬁ dataflom] ﬂﬂ

If you scroll down to the case covering waddr[11] you can see that the upper address
range for resetting waddr[11] has been incorrectly specified as 11'd1724
(Figure 14-16). Thisisthe cause of the error.

Figure 14-16. Source Code for waddr[11]

m i TukarialfQuestas,. 2_Demofassert_dbg/fifo_shift_ram.w
BF 1n # -
182 el=e
193 waddr[10] <= waddr[10] + 11'di;
1524 default:
195 if (BUG == 0}
196 if (waddr[11] == 11'di7zZ)
147 waddr[11] <= 11'di534;
185 el=e
199 waddr[11] <= waddr[11] + 11'di;
200 el=se
201 if (waddr[11] == 11'di724) | |
20z TrERddE T I =11 aTs3e;
203 el=e
204 waddr[11] <= waddr[11] + 11'di;
205 endoase
206 -
| | |
l |E avm_repaort,svh l m Wave I @ Fifa_shift_rarm. s r;ﬁ aky l ﬁ dataflow I ﬂﬂ

178 Questa SV/AFV Tutorial, v6.4c

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

7. Quit the simulation.
a. Enter quit -sim at the QuestaSim prompt and close all tabsin the MDI Frame.

Exploring Functional Coverage

1. Loadtheinterleaver once again.
a. Enter do fcov.do at the QuestaSim> prompt.

The interleaver uses a parameter (PKT_GEN_NUM), which is set to 80, to
determine the number of valid packets that will be interleaved. After the scoreboard
receives and verifies that 80 packets have been successfully interleaved it informs
the test controller, which halts both the stimulus generator and driver. During the
simulation, a coverage collector records several metrics for each packet sent to, and
output by, the interleaver. Figure 14-17 shows the source code of the up_cvg
covergroup.

Figure 14-17. Covergroup Code

m : [Tutorialfexamples/kutarials/systemverilog/assert_dbafinterleaver_cover.sv EREL

EF 1n # -

Z0 A4 Upstream packet covergroup

=21 COVErGEOUR Up owvg;

22 option.suto bin max = 256;

23 coverpoint upcov datar

=24 CoOvVerpoint upcov sync

25 binz svyno [] =4 71, 184 ::

26 hinz illegal = default:

27 B

25 coverpoint up delay {

29 binz short [] = {[0:4]}:

a0 binz shimed [] = {[5:9]}):

31 bins wdzlng [] = {[10:14]}:

3E bin= long [1 = {[15:19]}:

33 binz vrylng = default:

34 B

35 endgroup ;I

Kl 2

M WAy e | |h] interleaver_caver.sv | ﬂﬂ

The covergroup records the information stored in the upstream transaction captured
by the monitor. The transaction includes the byte wide values of the packet payload
data, the sync byte, and the individual data payload transfer times.

In order to have abin created for each data value, option.auto_bin_max = 256 is
specified since the default number of auto bins created is defined by the

Questa SV/AFV Tutorial, v6.4c 179

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

SystemVerilog LRM to be 64. The sync byte values are 71 and 184 which

correspond to 8'h47 and 8'hb8 respectively.

All other sync byte values are stored in the bin named illegal which should remain
empty. The packet payload data transfer delays times are recorded since the driver
randomly drives data to the interleaver. The packet payload data transfer delay bin
names are self descriptive and create a separate bin for each delay value except for
the vrylng (very long) bin which records any data transfer delay of 20 or more

cycles.

2. Inthe Covergroups tab of the Analysis window, expand the /top/dut hierarchy (click the
+ sign next to /top/dut) and you will find two additional covergroups —
sm _transitions_cvg and sm_cvg —which monitor the interleaver state machine.

Figure 14-18. Covergroup Bins

‘l"IName |Cn:werage |Gn:-a| |% of Goal |Status | |
:;—_lj Jtop/dut/fifo
+5 TYPEram_cvg 0.0% 100 0.0% 1
=gl ftopiduat
- gl TYPE sm_transitions_cwg 0.0% 100 0.0% 1
=gl C¥P smi_transitions_cvg:iink_state 0.0% 100 0.0% 1
.EE] bin idle_st i 1 0.0% I
|E] bin bypass_st 1] 1 0.0% /1
= &l TYPEsm_cvg 0.0% 100 0.0% I
+ gl C¥P sm_cvg:ink_state 0.0%: 100 0.0% 1
I;—_l CYP sm_cvg:iin_hs 0.0% 100 0.0% 1
I;—_l CY¥P sm_cvg:iout_hs 0.0% 100 0.0% 1
I:—_l CROSS sm_cvg:in_hsxint_state 0.0% 100 0.0% 1
L—_l CROSS sm_cvg:iout_hs¥ink_state 0.0% 100 0.0% 1
I X Assertions | A4 Cover Directives |B] Covergroups | ﬂ_?'l

The sm_transitions_cvg covergroup records the valid state machine transitions while
sm_cvg records that the state machine correctly acceptsincoming data and drives output
datain the proper states. Figure 14-19 shows the source code for the sm_cvg

covergroup.

180

Questa SV/AFV Tutorial, v6.4c

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

Figure 14-19. Covergroup sm_svg

m I Tukoriallexamples/tutorials/systemverilogfassert_dbg/finterleaver sy
EF ln # -

= COVErgroup Stoowvg [(posedge pins.clk):
93 CoOvVErpoint int state;
94 coverpoint in hs o
95 bins walid = {1};:
=1 ddignore hins invalid = default: [
o7 i
o5 coverpoint out hs o
99 bins walid = {1};:

100 ddignore hins invalid = default:

101 i

10z in hs¥int state: cross int state, in hs;

103 out_hs¥int state: cross int state, out hs;

104 option.at least = 500;

105 option.comrent = "ocowvered it':

106

107 endgroup ;I

A [
l ﬂ Wave l |h] interleaver_cover sy I |h] intetleaver. s | ﬂﬂ

Thein_hsand out_hssignals are derived by ANDing in_acpt with in_rdy, and out_acpt
with out_rdy respectively. The state machine assertsin_acpt whenidle, load_bypass, or
in any of the 10 load states, and asserts oup_rdy when in the send_bypass or any of 10
send states.

During proper operation, thein_hs signal should only assert if the state machineisidle,
load bypassor in any of the other 10 load states. Likewisethe out_hs should only assert
if the state machineisin send_bypass or any of the 10 send states. By crossing in_hs
with int_state and out_hswith int_state, this behavior can be verified. Figure 14-20
shows the sm_cvg covergroup with the int_state coverpoint expanded to show all bins.
Notice the bin values show the enumerated state names.

Questa SV/AFV Tutorial, v6.4c 181

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

Figure 14-20. Bins for the sm_cvg Covergroup

T‘Ir'-.lame |C|:uverage |G|:|al |% of Goal |Status | ||
:,—‘! [top)dut)fifo
+- gl TYPEram_cvg 0.0% 100 0.0% 1
=gl [frop)dut
+F gl TYPE sm_transitions_cwg 0.0% 100 0.0%: 1
=&l TYPEsm_cvg 0.0% o0 0.0% I
= 5 C¥P sm_cvg:ink_state 0.0% 100 0.0% 1
—B] bin autalidle] 0 500 0.0% 1

—E] bin auta[send_bypass]
—B] bin autalload]
—B] bin auto[send0]
—B] bin auta[loadl]
—B] bin autc[send!]
—B] bin auta[loadz2]
—B] bin autc[sendz]
—B] bin autalloads]
—B] bin auta[send3]
—B] bin autalload4]
—B] bin auto[send4]
—B] bin auta[loads]
—B] bin autc[sendS]
—B] bin auta[loads]
—B] bin autc[sends]
—B] bin autalload?]
—B] bin auta[send?]
—E] bin autalloads]
—B] bin auto[sends]
—B] bin auta[loadd]
—B] bin autc[sendd]
—B] bin autc[load10]
—B] bin autc[send10]
—E] bin autalload_bypass)

500 0.0% I
500 0.0% I
500 0.0% I
SO0 0.0% I
SO0 0.0%]
500 0.0%]
500 O0.0% I
500 0.0% I
500 0.0% I
500 0.0% I
500 0.0% I
SO0 0.0% I
SO0 0.0%]
500 0.0%]
500 O0.0% I
500 0.0% I
500 0.0% I
500 0.0% I
500 0.0% I
SO0 0.0% I
SO0 0.0%]
500 0.0%]
500 O0.0% I
500 0.0% I

[B e I e N s Y s I s I e I e s A e e I o I e e e e e o = T e e

—E] bin auta[wait_idle] 0 500 0.0% 1
4|-,-‘ C¥P =n_cwg:in_hs 0.0%: 100 0.0% 1
4|-,-‘ C¥P =rn_cvg:out_hs 0.0% 100 0.0% 1
+F gl CROSS sm_cvg:tin_hsdink_state 0.0% 100 0.0% /1
+F g CROSS sm_cvg:iout_hskink_state 0.0% 100 0.0%: 1
I j, Assertions | A Coaver Directives I |B] Covergroups | ﬂil

3. Expand the hierarchy (click the + sign) of /top/dut/fifo and the ram_cvg covergroup.
Notice that the TY PE ram_cvg covergroup contains several instances — designated by
INST.

182 Questa SV/AFV Tutorial, v6.4c

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

a. View the source code for TYPE ram_cvg by right-clicking the covergroup name and

selecting View Sour ce from the popup menu (Figure 14-21).

Figure 14-21. Viewing the Source Code for a Covergroup

-
1'1 Marne | Coverage | Goal |°.fo af Gu:ual| Skatus | .
=g ftop/dutjfifo
B-F TYPE ram_cu 1, 0% 100
<o Cvpran_[ENEN N - I
c 100 00% []
+- gl Cvpram_ Repnrt..lj‘i .:. A
T,-‘ Cross Fan a 100 0.0% 1
+- g Instance Use CrossPrintMissing — fs 100 0.0%: 1
+- gl Instance b 100 0.0% 1
el Expand Selected
++ ol Tnstance C"T‘” :ch . 3 0 00% 0 []
++ ol Instance E” EPZ:"E e 3 100 0.0%]
+ ol Tnstance C"ﬁan al b R i S —
ol INSEENCE e e e \ w0 0o% [-
| _"‘l;.ﬁ.ssertiuns | ACDver Directives |B] Covergroups ﬂil

The fifo_shift_ram.v source view will open to show the source code (Figure 14-22).

Figure 14-22. Source Code for ram_cvg Covergroup

m C: Tukarialfexamplestutarial stermverilogiviog_dut/Fifo_shift_ram..
EF| 1n # -
oo * }:Dvergrnup ram cvy (int idx, add low, add high)
[23=] option.per instance = 1;
70 Sfoption.goal = 10;
71 ffoption.cross num print missing = 1; _I
72 we_ep! coverpoint pushlidx-1] |
73 option.goal = 10;
74q bins=s walid = {1 }:
75 ignore bins inval = o i:
Th h
7
Ta add cp: coverpoint waddr[idx] |
79 option.goal = 20;
a0 type option.goal = Z0;
21 binz wvalid addr [] = {[add low:add high]}:
a2 h
o3 waddrXpush: cross add ep, we cp;
o4 endgroup j
l | »
l ﬂwave l interleaver_cover.svh l inkerleaver, sy [|h] Fifo_shift_ram.w | ﬂﬂ

Questa SV/AFV Tutorial, v6.4c

183

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

Sincetheinterleaver levelsare implemented using asingle RAM, with distinct RAM
address ranges for each level, the covergroup verifies that only valid address
locations are written and read.

Notice that there is only one covergroup but there are 11 covergroup instances that
are constructed with different values passed into the constructor (Figure 14-23).

Figure 14-23. Covergroup Instances for ram_cvg

m C: [Tutorialfexamples/tutarialsfsystemyverilogi+log_dutififa_shift_ram..

EFP In # -
85
=13 ram cvy ram cvgl = newil,0,16);
37 ram cvy ram cvgs = newii, 64,97 ;
38 ram cvy ram cvgld = newid, 128,178 ; —
f=1=] ram cvy ram cvgd = newid, 256,323 ;
=]n| ram cvy ram cvgs = newi5, 384,165 ;
=k ram cvy ram cvgs = newid, 512,613 ;
= ram cvy ram cvgy? = newily, 640,758 ;
93 ram cvy ram cvgd = newid, 765,903 ;

o4 ram cvy ram cvgd = newiS,1024,1176) ;
o5 ram cvy ram cvgll = new(l0,1280,1349) ;
Sa ram cvy ram cvgll = new(ll,1536,172Z2);

a7 LI
Il I
l ﬂwave 1 inkerleaver_cover.swh l interleaver, sw I |h] fifo_shift_ram. | ﬂ_ﬂ

Since the covergroup contains the option.per_instatnce = 1 statement

(Figure 14-22), the simulator creates a separate covergroup for each instance which
covers only the values passed to it in the constructor. The TYPE ram cvg
covergroup isthe union of all the values of each individual covergroup instance.

4. Open the Cover Directives tab and view the source code for the cover directive.

a. If the Cover Directivestab is not open in the Analysis window, select View >
Coverage > Cover Directives.

The Cover Directives tab contains a single cover directive (Figure 14-24).

184 Questa SV/AFV Tutorial, v6.4c

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

Figure 14-24. Cover Directive for the Interleaver Design

"Ir'-.lame |Language |Enal:|leu:| |L|:u;| |C|:|unt |.ﬁ.tLea5I: |Limit |'I.I'I.I'EiI;|ht |Cm|:u|t
=4 Stopidutfcover s_inkerleave_sm A ‘,{' Qff 0 1 Unlimited 1 0%
=H%5] ftop/dutis_interleave_sm
— Jrop/dutf\@{posedge pins. cll)),
Jtop/pins_iFfclk,

Jropfdutfink_state

fcopidutfin_hs

[topidutjout_hs

| I

j, Assertions A Caover Directives | B] Covergroups J

b. Right-click the cover directive and select View Sour ce from the popup menu.
Figure 14-25 shows that this cover directive also tracks the interleaver state machine
transitions.

el

Figure 14-25. Source Code for the Cover Directive

m C:fTukorialfQuestas, 2_Demofassert_dbgfinterleaver . s

EF 1n # -
P2
73 * COVEr property (5 interleave =m); = |
74
75 COVErgroup Sm_transitions cwvyg [{posedge pins.clk):
TE coverpoint int state |
i bin=s idle =t = {idle =»> send bypass[->1] => load0[->1]
s loadl[->1] =»> sendl[->1] =»> load2[->1]
g load3i[->1] =»> send3i[->1] =»> loadd4[->1]
a0 load5[->1] =» sendS[->1] => load&é[->1] lI

al | i
I Mwave l |h] interleaver_caver.sv lﬂfifn_shift_ram.'-.f lminterleaver.sv | ﬂﬂ

SystemVerilog provides multiple ways to cover important itemsin adesign. The
advantage of using a cover directiveis that the QuestaSim Wave window provides
the ability to see when adirectiveis hit. While covergroups provide no temporal
aspect to determine the precise time an event is covered, covergroups are typicaly
much better at covering data values. Both of SystemVerilog's coverage capabilities
provide a powerful combination by using the cover directives temporal nature to
determine when to sample data oriented values in a covergroup.

5. Runthe simulation and view functional coverage information.

a. Enter run -all at the command prompt in the Transcript window. The design runs
until at “TEST PASSED” message is reached. (In Windows, you may see a*“Finish

Questa SV/AFV Tutorial, v6.4c 185

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

Vsim” dialog that will ask, “Are you sure you want to finish?’ Click No.) The
Transcript window will display scoreboard information (Figure 14-26).

Figure 14-26. Scoreboard Information in the Transcript

Transcripk

MUMBER. OF PACKETS CORRECTLY RECEIVED BY SCOREEOARD = a5 -
#DONE =1

UPSTREAM MOMITOR AP PORT WRITE ID= 0 3¥MC=ba START= 1434490 EMD= 1473750

** MESSAGE: interleaver_score,svh{29) @ 1473750; env,scoreboard [Upstream Packet Received by Scorebo
ard] b3 1434400 1473750

g *
#* *

*
*
TEST PASSED *

1

** Moke: $Finish 1 bop.sv(25)
Time: 1473770 ns Ikeration: 0 Instance: ftop

Break in Module top ak kop,sy line 25

YSIM 5= | :I
-
‘ l Transcripk I ﬂil

b. Expand the functional coverage information in the Covergroupstab of the Analysis
window as shown in Figure 14-27. While our overall covergroup coverage is almost
95% (as shown in the status bar at the bottom of the window), there is one short bin
in the up_delay covergroup that has no hits. Currently the driver inserts at |east one
cycle between words when driving packet payload data.

Also, thesm cvg showsreleatively low (76.9%) coverage dueto low coveragein the
in_hsXint_state and out_hsXint_state cross coverage bins. Thisis expected because
thein_hssignal only assertsin either the idle state, the load bypass state, or one of
the 10 load states and the out_hs signal only assertsin the send_bypass or 10 other
send states. So while the indicated coverage for these cross bins might appear to
point to an area needing more testing, the absence of coverage is actually indicating
that proper behavior took place.

186

Questa SV/AFV Tutorial, v6.4c

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

Analysis

Figure 14-27. Covergroup Coverage in the Analysis Window

Coverage

|Gu:ua|

|% of Goal |Status | ||

ar

JtopfdutfFifo

= # Jtopdut

I _"'\, Assertions | A Cover Directives IE]Cnvergrnups |

++ @l TYPE sm_transitions_cvg 100.0% 100 wo0.0% [
=+ TYPE sm_rvg 76,9% w0 765
+ gl C¥P sm_cvg:ink_state 92, 3% 100 92, 3% O]
+ gl C¥P sm_cvg:in_hs 100.0% 100 on.0%]
[+ gl C¥P sm_cvg:iout_hs 100.0%: 100 0.0y]
+- gl CROSS sm_cvg:in_hs¥int_state 46.2% 100 46.2% [
[+ g CROSS sm_cvg:iout_hskink_state 46.2% 100 46.2% [
=g finterleaver_swe_pkgfinterleaver_coverfinterleaver_cover 1
—+ TYPEup_cva 98, 3% w0 83 I
+ gl C¥P up_cvg:iupooy_data 100,0% 100 on.0%]
+ gl C¥P up_cvg:iupooy_sync 100.0% 100 mon.0%]
=gl C¥P up_cvg:iup_delay 95, 0% 100 95,0% O
—B] bin short[0] 1] 1 0.0% 1
—B] bin short[1] 6472 1 647200.0% [
—B] bin short[2] 4038 1 403300.0% [
—B] bin short[3] 2225 1 222500.0% [
—B] bin short[4] 1375 1 137500.0% [
—B] bin shzmed[5] &70 1 g7000.0% (I
—B] bin shzmed[s] 604 1 60400.0% (I
—B] bin shzmed[7] 407 1 40700.0% (D
—B] bin shzmed[z] 319 1 31900.0% (I
—B] bin shzmed[9] 236 1 23600.0% [
—B] bin mdzing[10] 174 1 17400.0% [
—B] bin mdzing[11] 135 1 13500.0% [
—B] binmdzing[12] 86 1 8600.0% [
—B] bin mdzing[13] g2 1 g200.0% (I
—B] binmdzing[14] 73 1 7300.0% (D
—E] binlong[15] 59 1 5900.0% (I
—E] binlong[16] 49 1 4900.0% (DD
—B] binlang[17] 42 1 4200.0% (DD
—B] bin long[15] 38 1 3800.0% [
—B] binlang[15] 25 1 2500.0% [
—E] default bin vrying 149 - -
+- 4 TYPE dn_rvg 98, 3% 0o 98a%
o8]

Covergroup Coverage: 94, 7% I

|Showing Al Contesxts

If you expand the sm_transition_cvg covergroup you will see that shows 1461
interleaver state transitions (86 when starting from the idle loop, and 1375 when

starting from the bypass loop).

Questa SV/AFV Tutorial, v6.4c

187

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

c. Open the Cover Directives tab.

The cover directive counts the same state transitions and, therefore, also indicates a
count of 1461 transitions (Figure 14-28).

Figure 14-28. Cover Directive Counts State Transitions

|Language |Ena|:||eu:| |L|:u;| |C-:uunt |.ﬁ.tLeast |Limit |'-.-'-.-'eight |Cmplt %|Cmplt q
VA Off 1461 1 Unlirited 1 100%

;|—_5|] [topidut)s_interleave_sm
- [topfdutfy@{posedge pins.clk),
[top)pins_if fclk,
ftop/dutfint_state
ftopidutfin_hs
Jtopfdutfout_hs

+ |

_\ Assertions A Cover Direckives | |B] Covergroups ‘

IDirective Coverage: 100%: |Shn:|wing &l Conkexks

6. Add the cover directive to the Wave window twice.

a. Right-click the /top/dut/cover__s interleave_sm cover directive and select Add
Wave > Selected Functional Coverage.

b. Repeat.

7. Change the Cover Directive View of the second directive displayed in the Wave
window from Temporal to Count Mode.

a. Right-click the second directive and select Cover Directive View > Count Mode
(Figure 14-29).

Figure 14-29. Changing the Cover Directive View to Count View
PASS

1

load_bypasz
[l

[N e
Object Declaration
Yiew Azzerh

Cover Directive Yiew W
R v Tempesl Mode

188 Questa SV/AFV Tutorial, v6.4c

SystemVerilog Assertions and Functional Coverage
Exploring Functional Coverage

Figure 14-30 and Figure 14-31 are two screen shots of the cover directive. In both
screen shots, the top view of the directive shows the temporal aspect of when the
thread went active while the bottom view shows the actual count value. When you
compare the two screen shots, which display different pointsin time, it iseasy to see
the random nature of the drives. In Figure 14-30 thereis 780 ns between the start and
end of the cover directive thread; in Figure 14-31 thereis 920 ns.

Figure 14-30. First Temporal and Count Mode Views of Cover Directive
m wave - defaulk

ACTIVE ’

i 1
int_state send_bypass :#jﬂ@ﬂ@ﬂ:ﬂﬂﬂﬂﬂﬂﬂﬂﬂ:ﬂﬂﬂﬂﬂ:ﬂ:
in_hs Sk0
aut_hs Sk h |
= A cover__s_interleave_sm | 655 B T R R -
4 lk 1 u I
int_skate send_bypass ['11jﬂ@[ﬁ@ﬂ:ﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂ:ﬁﬂﬂﬂﬂﬂ:ﬂ:

r
4 in_hs Sk
r

aut_hs Sk0
S Mow | 1473770 ns

e cusorl | 63710 ns ||ECERLEE

Y- Cursar 2

Messages

Interleave DUT
o _inkerleave_sm |ACTIVE

4 ek 1

4 ink_state send_bypass :13::):1:1:133@333:\33:\@3:\3:\3@3:\:#}35
4. in_hs Sk

4. out_hs SO h
cowver_s_inkerleave_sm | 664 BEZ AR Li'l—
4l 1

4 int_state send_bypass :1:1::)3:1:133@3333333@3:\3:\3@3::#}35
4 in_hs SkO

4 ouk_hs SO | i

Cursar 1 e40110 n= 540110 ns
Cursor 2 641030 ns

Mow | 1473770 ns

[N

Questa SV/AFV Tutorial, v6.4c 189

SystemVerilog Assertions and Functional Coverage
Creating Functional Coverage Reports

Creating Functional Coverage Reports

Y ou can create functiona coverage reports using dial ogs accessible through the GUI or via
commands entered at the command line prompt.

1. Create afunctional coverage report using the GUI.

a. Right-click in the Analysis pane and select Reports. This opens the Functional
coverage report dialog (Figure 14-32).

Figure 14-32. Functional Coverage Report Dialog

Functional coverage repork il

— Reparkt on

™ specific instance

Instance MName Is im: ftop/™® Browse. ..

¥ Recursive

&+ all coverage items

—Coverage items

 dllitems % Cowvergroups only) Direckives only

Filkering Conkents
i mMone v Include detailed resulks
" Zero coverage only [Include config info
" Range ¥ Include comments
[T above Percent |25— ¥ Include covergroup options
™ Below Percent I'i‘5—

—Dther Opkions

[T Use xML Format
Iv wirike ko file

Filenarne |fcuver_repurt. ML Browse. ..

[aAppend to existing File

O | Cancel

b. With"All coverage items' selected, select Covergroups only.
c. Select Include covergroup options.
d. Select OK to write the report to the file fcover_report.txt.

The actions taken in the GUI are echoed in the transcript as follows:

190 Questa SV/AFV Tutorial, v6.4c

SystemVerilog Assertions and Functional Coverage
Creating Functional Coverage Reports

fcover report

-cvg -coments -option -file fcover_report.txt -r

The report will appear automatically in QuestaSim Notepad as shown in

(Figure 14-33).

Figure 14-33. The Functional Coverage Report

*

Motepad ;IEIEI
File Edit ‘Window
£ Feover_repart, bxk X

COVERGEOUP COVERAGE:

Cowvergroup HMetric Goal/ 3tatus
4t Least
TYPE /top/dut/sm_transitions owg 100.0% 100 Covered
type_option.weight=1
type_option.goal=100
type_option.comment=NULL
type_option.strobe=0
Coverpoint sm_transitions_cwy::int state 100. 0% 100 Cowvered
type_option.weight=1
type_option.goal=100
type_option. comment=NULL
bin idle_st ga 1 Covered
bin hypass_st 1375 1 Cowered
TYPE /topsdut/sm_cvg TE.9% 100 Tncovered
type_option.weight=1
type_option.goal=100
type_option.comment=NULL
type_option.strobe=0
Coverpoint am_cwi::int_state Q2. 3% 100 Unecowvered
type_option.weight=1
type_option. goal=100
type_option. comment=NULL
bin auto[idle] an 500 Tncovered
bin auto[send bypass] 3205 500 Covered
bin auto[load0] 2792 500 Covered
bin auto[send0] 3505 200 Covered
bin auto[loadl] 2838 500 Covered
bin auto[sendl] 3255 500 Covered
bin auto[load] 2933 00 Covered
bin auto[=sendi] 3237 500 Covered ‘:J
< | |
] foover_repart.txt | EE!

Y ou can also create textual, html, and exclusion coverage reports using the T ools > Cover age
Report menu selection.

Questa SV/AFV Tutorial, v6.4c

191

SystemVerilog Assertions and Functional Coverage
Lesson Wrap-Up

Lesson Wrap-Up

This concludes this lesson.

1. Select File> Quit to close QuestaSim.

192

Questa SV/AFV Tutorial, v6.4c

Chapter 15
Using the SystemVerilog DPI

Introduction

This lesson is designed to walk you through the basics of using the SystemV erilog Direct
Programming Interface (DPI) with QuestaSim. After completing this lesson, you should have a
good understanding of the interface's intentions.

Wewill start with asmall design that shows how simulation control flows back and forth across
the boundary between V erilog simulation and code written in aforeign language. In thistutorial
we will use code written in C, which is the foreign language most commonly used to interface
with Verilog simulations.

The design mimics atraffic intersection. We will bring up the design in QuestaSim and monitor
the waveform of asignal that represents atraffic light. We will run the simulation and watch
how the light changes color as we call functions written in both Verilog and C, freely moving
back and forth between the two languages.

This lesson is designed to work with the QuestaSim 6.1 release and newer.

Design Files for this Lesson

The QuestaSim installation comes with the design files you need, located in the following
directory:

<install_dir>/examples/tutorials/systemverilog/dpi_basic

Start by creating anew directory for this exercise (in case other users will be working with these
lessons) and copy all files from the above directory into it.

Related Reading
User’'s Manual Appendix: Verilog Interfacesto C
User's Manual Chapter: Verification with Functional Coverage

Examine the Source Files

Before getting started, take alook at the main design source filesin order to get acquainted with
the simulation flow and some of the basic requirements for DPI.

1. Open the code for module test.sv in atext editor. It should ook like the codein
Figure 15-1.

Questa SV/AFV Tutorial, v6.4c 193

Using the SystemVerilog DPI

Co~NOUO~WNE

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Figure 15-1. Source Code for Module test.sv

modul e test ();
typedef enum {RED, GREEN, YELLOW traffic_signal;
traffic_signal light;
function void sv_G eenLight ();
begin
Iight = GREEN,
end
endfunction
function void sv_YellowLi ght ();
begin
light = YELLOW
end
endfunction
function void sv_RedLi ght ();
begin
light = RED;
end
endfunction
task sv_WaitForRed ();
begin
#10;
end
endt ask
export "DPI-C' function sv_Yell owLight;

export "DPI-C' function sv_RedLight;
export "DPI-C' task sv_Wiit ForRed;
import "DPl-C' context task c_CarWaiting ();
initial
begin
#10 sv_G eenlLi ght;
#10 c_CarWii ting;
#10 sv_Greenli ght;
end
endnmodul e

Line 1 —We havejust one top-level module called test in which all the simulation
activity will occur.

Line 3 —We declare a new datatype called traffic_signal, which will contain the data
values RED, GREEN, and YELLOW.

Line 5 —We declare an object of this new traffic_signal type and give it the name light.

194

Questa SV/AFV Tutorial, v6.4c

Using the SystemVerilog DPI

Lines 7-11 — We define a Verilog function called sv_GreenLight which has no return
value. It simply setsthe light to a value of GREEN. Note also that we give the function
name a prefix of sv_in order to distinguish between tasks/functions defined in
SystemVerilog and functions defined in C.

Lines 13-17 — We define another function called sv_YellowLight, which changes the
light to YELLOW.

Lines 19-23 — We define another function called sv_RedLight, which changes the light
to RED.

Lines 25-29 — The Verilog task sv_WaitForRed simply delays for 10 time units (ns by
default). Why do we define atask rather than a function? This will become apparent as
we go through the actual simulation steps coming up.

Lines 31-33 — These lines do not look like typical Verilog code. They start with the
keyword "export", followed by some additional information. These statements are
export declarations — the basic mechanism for informing the Verilog compiler that
something needs to be handled in a special way. In the case of DPI, specia handling
means that the specified task or function will be made visible to aforeign language and
that its name must be placed in a special name space.

The syntax for these declarations is defined in the SystemVerilog LRM. Thereisa
simple rule to remember regarding how they work:

When running a SystemV erilog simulation and using DPI in order to utilize foreign
(C) code, the Verilog code should be thought of as the center of the universe (i.e.
everything revolves around the Verilog code). When you wish to make something in
Verilog visible to the foreign world, you need to export it to that world. Similarly, if
there is something from that foreign world that you want your Verilog code to see
and have access to, you need to import it to Verilog.

So in these lines, we export two of the functions and the task that we've just defined to
the foreign world (sv_YellowLight, sv_RedLight, and sv_WaitForRed). But why don’t
we export the sv_GreenLight function? You'll see in a moment.

Line 35— Theimport declaration is used to import code from the foreign (C) world into
the Verilog world. The additional information needed with an import declaration
includes:

* how you want this foreign code to be seen by Verilog (i.e. should it be
considered atask or afunction), and

* the name of the task or function.

In this case, we will import atask named ¢_CarWaiting from the C world (notethec_
prefix so that we can keep track of where these tasks/functions originated). Thisisan
important concept to remember. If you try to call aforeign task/function but forget to
include an import declaration for it, you will get an error when you load simulation
stating that you have an unresolved reference to that task/function.

Questa SV/AFV Tutorial, v6.4c 195

Using the SystemVerilog DPI

Lines 37-42 —We use alittle initial block that executes the simulation and walks us
through the light changing scenario. The light starts out RED by default, sincethat isthe
first (left-most) value in the light's type definition (i.e. the traffic_signal type). When
simulation starts, we wait for 10 time units and then change the light to GREEN viathe
sv_GreenLight function. All this occursin the Verilog world, so there is no need to
export the sv_GreenLight function. We won't be doing anything with it over in the
foreign world.

Next, we wait for 10 time units again and then do something called c_CarWaiting. From
our previous discussion of the import declaration, we know thisis a C function that will
be imported as a Verilog task. So when we call this task, we are actually stepping over
into the foreign world and should be examining some C code. In fact, let's take alook at
the other source file for this lesson to see what happens when this line executes during
simulation.

. Open the foreign.c sourcefilein atext editor. It should ook like the codein Figure 15-2.

Figure 15-2. Source Code for the foreign.c File - DPI Lab

nt c_CarWiting()

-~ -

printf("There’s a car waiting on the other side. \n");
printf("lnitiate change sequence ...\n");
sv_Yel l owLi ght () ;
sv_Wait For Red() ;
sv_RedLi ght () ;
return O;

QOWO~NOOUITAWNPE
—

=

Line 1 —Thisisthe function definition for c_CarWaiting. It is an int type function and
returnsaO.

Lines 3-4 — The statement inside the function prints out a message indicating that a car
iswaiting on the other side of the intersection and that we should initiate a light change
sequence.

Line5—Wecall the SystemVerilog function sv_YellowLight. Even though we arein the
foreign (C) world now, executing C functions/statements until this function exits and
returns control back over to Verilog, we can indeed call the Verilog world and execute
taskg/functions from there. The reason the C code knows that sv_YellowLight existsis
because we've exported it back in our Verilog code with the export declaration.

To follow along with the simulation, look at the sv_YellowLight function in lines 13
through 17 in the test.sv file (Figure 15-3). Here, we change the light to a value of

Y ELLOW, then pass control back to foreign.c and go to the line following the
sv_YellowLight function call.

Figure 15-3. The sv_YellowLight Function in the test.sv File

196

Questa SV/AFV Tutorial, v6.4c

Using the SystemVerilog DPI

13 function void sv_YellowLight ();
14 begin

15 light = YELLOW

16 end

17 endfunction

Line 6 —Now we call the sv_WaitForRed SystemV erilog task, defined on lines 25-29 of
test.sv (Figure 15-4).

Figure 15-4. The sv_WaitForRed Task in the test.sv File

25 task sv_WaitForRed ();
26 begin

27 #10;

28 end

29 endt ask

The task designates await for 10 time units. Since there is time delay associated with
this procedure, it hasto be atask. All the rules associated with tasks and functionsin
basic Verilog will also apply if you call them from the foreign world. Since we compile
the two source files independently (one with aVerilog compiler and one witha C
compiler), the rules of one language will not be known to the compiler for the other. We
will not find out about issues like thisin many cases until we simulate and hook
everything together. Be aware of this when deciding how to import/export things.

An important thing to note here is that we made this call to the SystemVerilog
sv_WaitForRed() task from the foreign (C) world. If we want to consume simulation
time, C doesn't know anything about the SystemV erilog design or simulation time units.
So we would need to make calls back over to Verilog in order to perform such
operations. Again, just remember which world you are in as you move around in
simulation.

Anyway, sv_WaitForRed just burns 10 time units of ssmulation and then returns control
back over to C. So we go back over to foreign.c and proceed to the next line.

Line 7 —Herewe call the sv_RedLight SystemV erilog function, which changes the light
to RED. If you look up that function in test.sv, that is exactly what occurs (Figure 15-5).

Figure 15-5. The sv_RedLight Function in the test.sv File

19 function void sv_RedLight ();
20 begin

21 i ght = RED;

22 end

23 endfunction

Thisisthelast statement in the c_CarWaiting function in foreign.c. So now thisfunction
exits and returns control back over to Verilog.

The simulator returnsto line 40 in test.sv, which called this C function in the first place.
There is nothing else to be done on this line. So we drop down to the next line of

Questa SV/AFV Tutorial, v6.4c 197

Using the SystemVerilog DPI

execution in the simulation. We wait for 10 time units and then call the sv_GreenLight
function (Figure 15-6). If you recall, this function just keeps execution in the Verilog
world and changes the light back to GREEN. Then we're all done with simulation.

Figure 15-6. Function Calls in the test.sv File

37 initial

38 begin

39 #10 sv_G eenli ght;
40 #10 c_CarWii ting;

41 #10 sv_Greenli ght;
42 end

Compile and Load the Simulation

Create anew directory and copy into it al files from:
<install_dir>/questasim/examples/tutorials/systemverilog/dpi_basic

Change directory to this new directory and make sure your QuestaSim environment is set up
properly.

UNIX and Linux: Use the make utility to compile and load the design into the simulator.

Windows: Double-click the windows.bat file.

Note
D For Windows users, if you do not have the gcc-3.3.1-mingw32 compiler installed,

download it from SupportNet (http://supportnet.mentor.com/) and unzip it into the

QuestaSim install tree. In addition, make sureit isin your Path environment variable.

Explore the Makefile

A Makefile has been included with this lesson to help UNIX and Linux users compile and
simulate the design (Figure 15-7), or you can run "make all" to kick off the whole thing all at
once. Thereisalso aclean target to help you clean up the directory should you want to start over
and run again.

Figure 15-7. Makefile for Compiling and Running on UNIX or Linux Platforms

1 worklib:
2 vlib work
3

4 compile: test.sv

5 vl og test.sv -dpi header dpi _types.h
6

7 foreign: foreign.c

198 Questa SV/AFV Tutorial, v6.4c

Using the SystemVerilog DPI

8 gcc -1 $(MIl _HOVE)/include -shared -g -o foreign.so foreign.c
9

10 optim ze:

11 vopt +acc test -0 opt_test

12

13 foreign_w ndows: foreign.c

14 vsim-c opt_test -dpiexportobj exports

15 gcc -1 $(MIl_HOVE)/include -shared -g -o foreign.dll foreign.c
exports.obj -Intipli -L$(MIl_HOVE)/w n32

16

17 sim

18 vsimopt _test -sv_lib foreign

19

20 all:

21 worklib conpile foreign optinmize sim

22

23 all _wi ndows:

24 worklib conpile optimnmze forei gn_w ndows sim
25

26 cl ean:

27 rm-rf work transcript vsimwf foreign.so foreign.dl |l exports.obj
28

The five targets in the Makefile are:

Line 1 —Thevlib command creates the work library where everything will be compiled
to.

Lines 4-5 — The vlog command invokes the vliog compiler on the test.sv source file.

Lines 7-8 — The gcc command invokes the gcc C compiler on the foreign.c source file

and creates a shared object (foreign.so) that will be loaded during simulation. Note that
this command assumes that you have the MTI_HOME environment variable set to the

QuestaSim installation directory.

Lines 10-11 — The vopt command initiates optimization of the design. The +acc option
provides full visibility into the design for debugging purposes. The -0 option is required
for naming the optimized design object (in this case, opt_test).

Lines 16-17 — The vsim command invokes the simulator using the opt_test optimized
design object. The -sv_lib option specifies the shared object to be loaded during
simulation. Without this option, the simulator will not be able to find any imported (C)
functions you've defined.

Explore the windows.bat File
A windows.bat file has been included for Windows users (Figure 15-8).

Figure 15-8. The windows.bat File for Compiling and Running in Windows - DPI
Lab

Questa SV/AFV Tutorial, v6.4c 199

Using the SystemVerilog DPI

1 vliib work

2

3 vlog test.sv -dpi header dpi _types.h

4

5 vopt +acc test -0 opt_test

6

7 vsim-c test -dpiexportobj exports

8

9 gcc -1 9Tl _HOVE% i ncl ude -shared -g -o foreign.dll foreign.c
exports.obj -Intipli -L %Vl _HOVEY% wi n32

10

11 vsim-i opt_test test -sv_|lib foreign -do "add wave light; view source”
12

The windows.bat file compiles and runs the ssmulation as follows:

Line 1 —The vlib command creates the work library where everything will be compiled
to.

Line 3 - The vlog command invokes the viog compiler on the test.sv sourcefile.

Line 5 — The vopt command initiates optimization of the design. The +acc option
provides full visibility into the design for debugging purposes. The -0 option is required
for naming the optimized design object (in this case, opt_test).

Line 7 — Thefirst vsim command creates an object called exports which is used by the
gcc command.

Line 9 — The gcc command compiles and links together the foreign.c source file and the
exports.obj file created with the previous command. The -0 option creates an output
library called foreign.dll.

Note
This command assumes that you have the MTI_HOME environment variable set to the

QuestaSim installation directory.

Line 11 — The second vsim command invokes the simulator using the opt_test
optimized design object. The -sv_lib option tells the ssmulator to look in the foreign.dil
library for C design objects that can be used in the SystemV erilog ssmulation. The -do
"add wave light; view source" option adds the light signal to the Wave window and
opens the Source window for viewing.

Run the Simulation

Oncein simulation, you can step through the code or simply run the simulation in 10 ns
increments to observe changesin the light signal’ swaveform. If you look in the Objects panein
the QuestaSim graphic interface (Figure 15-9), you should see the "light" object with itsinitial
value of RED. If the Objects window is not open, select View > Objects from the Main menus
to openit.

200 Questa SV/AFV Tutorial, v6.4c

Using the SystemVerilog DPI

Figure 15-9. The light Signal in the Objects Pane

*|Name [Vale |Kind _[bode |

4 light RED Enum Inkernal

UNIX and Linux: Drag and drop that object into a Wave window.
Windows:. The light object has already been placed in the Wave window.

1. Runthesimulation for 10 ns.

a. Enter run 10 nsat the command line. You'll seelight turn “GREEN” in the Objects
and Wave windows.

b. Repeat severa times and watch the Wave window as it changes values at the
appropriate simulation times (Figure 15-10).

Figure 15-10. The light Signal in the Wave Window

GREEM BED JGREEN T

1 £ wave l] test sv J EIE

2. Restart the simulation.

a. Click the Restart icon.

b. Inthe Restart dialog, click the Restart button.
3. Runthesimulation for 10 ns.

a. Enter run 10 nsat the command line.
4. View the test.sv codein the Source window.

a. Select thetest.sv tab.

Questa SV/AFV Tutorial, v6.4c 201

Using the SystemVerilog DPI

5. Step through the code.

#

a. Click the Step icon

and watch the blue arrow in the Source window move

through the code for test.sv (Figure 15-11) and foreign.c. This allows you to keep
track of where you are in the source files as you step through the simulation. Feel
free to experiment and try adding your own functions, tasks, statements, etc.

Figure 15-11. Source Code for test.sv

m C: [Tutorialfexamplesftutarials)systemverilogfdpi_basicftest. sy
Lnat -
32 export "DPI-C" function sv_FedLight:
33 export "DPI-C" task sv_WaitForRed:
g
35 import "DPI-CM" context task o CarWaiting (]
3iB
37 initial
k1= begin
39 #10 sv_GreenLight:
40@mp | #10 o _CarWaiting:
41 #10 sv_GreenLight:
42 encd
43 :j
2 Ja
g wave | h]test.sy | 4]

Lesson Wrap-Up

This concludes this lesson on the basics of how DPI works in QuestaSim. Y ou should feel
comfortable with these elements before moving on to the next tutorial. This design only
accomplishes some simple function calls to change the values of the signal light in order to
stress how easy it isto step back and forth between Verilog and aforeign language like C.
However, we have not done anything terribly interesting in regard to passing data from one
language to the other. Isthis possible? Most definitely. In fact, the next lesson will address this

subject.

1. Select Smulate> End Simulation. Click Yes.

202

Questa SV/AFV Tutorial, v6.4c

Chapter 16
Using SystemVerilog DPI for Data Passing

Introduction

Thislesson is designed to build on your understanding of the Direct Programming Interface
(DPI) for SystemVerilog. In the previous lesson, you were shown the basic elements of the
interface and how to make simple function calls to/from Verilog and C. However, no data was
passed across the boundary, which is avery important topic to understand. This lesson will
focus on that aspect of the interface.

Although DPI allows Verilog to interface with any foreign language, we will concentrate on the
C language in this lesson.

Mapping Verilog and C

Whenever we want to send the value of an object from Verilog to C, or vice versa, that value
will have adua personality. It may have been initialized as a bit or areg over in the Verilog
world, for example, and then passed over to C via an imported function call. The C world,
however, does not have regs, bits, logic vectors, etc. How isthis going to work?

What you need in this situation is atable that maps Verilog typesto C types. Fortunately, much
of the type definition that went into Verilog-2001 and SystemV erilog was done with the
intention of matching C datatypes, so much of this mapping is pretty straightforward. However,
some of the mapping isalittle more complex and you will need to be aware of how an object in
Verilog will map to its C counterpart.

Do you have to define this mapping? No. The SystemV erilog language defines it for you, and
the ssimulator is set up to handle all of these dual personality issuesitself. For example, in
Verilog, anint isa2-state, signed integer that is stored in 32 bits of memory (on the system; it's
not an array or avector). The fact that a Verilog int is a 2-state type isimportant in that it only
allows 0 and 1 values to be assigned to its bits. In other words, no X or Z values are alowed
(they are just converted to O if you try to assign them).

Thisis straightforward and it appears to behave just like a C int would, so the mapping is easy:
aVerilogint will maptoaCint asit crosses the boundary.

Design Files for This Lesson

The design files for this lesson are located in the following directory:

<install_dir>/examples/tutorials/systemverilog/data_passing

Questa SV/AFV Tutorial, v6.4c 203

Using SystemVerilog DPI for Data Passing

Start by creating anew directory for this exercise (in case other users will be working with these
lessons) and copy all files from the above directory into it.

Related Reading

User’'s Manual Appendix: Verilog Interfacesto C

User’s Manual Chapter: Verification with Functional Coverage

Examine the Source Files

Before getting started, let’ slook at the foreign.c file which contains the definitionsfor thetwo C
functions we' |l be using to read our data values coming over from the Verilog world and print
messages to let us know what is going on.

1

OO NOOUIDAWN P

Open the code for the foreign.c file in atext editor. It should look like the code in
Figure 16-1.

Figure 16-1. Source Code for the foreign.c File - Data Passing Lab

#i ncl ude "dpi _types.h"

void print_int(int int_in)

{
}

printf("Just received a value of %l.\n", int_in);

void print_logic(svLogic logic_in)
{
switch (logic_in)
{
case sv_0: printf ("Just received a value of logic 0.\n");
br eak;
case sv_1: printf ("Just received a value of logic 1.\n");
br eak;
case sv_z: printf ("Just received a value of logic Z.\n");
br eak;
case sv_x: printf ("Just received a value of logic X \n");
br eak;

Line 1 —Weinclude a header file called dpi_types.h which will help us with type
conversions — more to come on that a bit later.

Line 3—Thisisthe definition for afunction called print_int, which simply takes an
integer argument and printsits values.

Line 8 — Thisisthe definition for afunction called print_logic which takes an argument
of type svL ogic and then checksto see what value it isand prints amessage accordingly.

204

Questa SV/AFV Tutorial, v6.4c

Using SystemVerilog DPI for Data Passing

2. Now let’slook at the SystemV erilog source code. Open the test.sv source file in atext
editor. It should look like the code in Figure 16-2.

Figure 16-2. Source Code for the test.sv Module

1 nodule test ();
2
3 inmport "DPI-C' context function void print_int (input int int_in);
4 inmport "DPI-C' context function void print_logic (input logic logic_in);
5
6 int int_var;
7 bit bit_var;
8 logic logic_var;
9
10 initial
11 begin
12 print_int(int_var);
13 int_var =1
14 print_int(int_var);
15 int_var = -12;
16 print_int(int_var);
17 print_int(bit_var);
18 bit var = 1’ bl;
19 print_int(bit_var);
20 bit var = 1’ bx;
21 print_int(bit_var);
22 | ogic_var = 1'bl;
23 print_int(logic_var);
24 | ogi c_var = 1'bx;
25 print_int(logic_var);
26 print_logic(logic_var);
27 | ogi c_var = 1'bz;
28 print_logic(logic_var);
29 | ogi c_var = 1'DbO;
30 print_logic(logic_var);
31 end
32
33 endnodul e
34

Lines3-4—Theselinesdon’'t look like typical Verilog code. They start with theimport
keyword and are followed by additional information. These statements are referred to as
import declarations. An import declaration is a mechanism used to inform the Verilog
compiler that something needs to be handled in a special way. In the case of DPI, the
special handling means that the specified task or function will be made visible to
SystemVerilog from aforeign language and that its name will need to be placed in a
special name space.

The syntax for these declarations is defined in the SystemVerilog LRM. Thereisa
simple rule to remember regarding how they work: When running a SystemVerilog
simulation, and using DPI in order to utilize foreign (C) code, the Verilog code should
be thought of as the center of the universe (i.e. everything revolves around the Verilog
code).

If thereis something from that foreign world that you want your Verilog code to see and
have access to, you need to "import" it to Verilog. Similarly, when you wish to make

Questa SV/AFV Tutorial, v6.4c 205

Using SystemVerilog DPI for Data Passing

something in Verilog visible to the foreign world, you need to "export" it to that world
(see the previous lesson). So in these lines, we import the two functions that we've just
defined over in the foreign world (print_int & print_logic).

Lines 6-8 — Here, we declare three variables that will be used as argumentsin the two
functions. Note how they are defined asthree different SystemVerilog types: int, bit, and
logic.

Lines 10-31 —Thisinitia block simply calls each function and sets values for each
variable in a sequence that will be discussed when we run the design.

Compile and Load the Simulation

Create anew directory and copy into it al files from:
<install_dir>/questasim/examples/tutorials/systemverilog/data_passing

Change directory to this new directory and make sure your QuestaSim environment is set up
properly.

UNIX and Linux: Use the make utility to compile and load the design into the ssmulator.

Windows: Double-click the windows.bat file.

Note
D For Windows users, if you do not have the gcc-3.3.1-mingw32 compiler installed,

download it from SupportNet (http://supportnet.mentor.com/) and unzip it into the

QuestaSim install tree. In addition, make sureit isin your Path environment variable.

Explore the Makefile

A Makefile has been included with this lesson to help UNIX and Linux users compile and
simulate the design (Figure 16-3), or you can run "make all" to kick off the whole thing all at
once. Thereisalso aclean target to help you clean up the directory should you want to start over
and run again.

Figure 16-3. Makefile for Compiling and Running on UNIX and Linux Platforms

206 Questa SV/AFV Tutorial, v6.4c

Using SystemVerilog DPI for Data Passing

OO NOOUIDAWN P

20
21

wor kl i b:
vlib work
conpile: test.sv
vl og test.sv -dpi header dpi_types.h
foreign: foreign.c
gcc -1$(Mrl_HOVE)/include -shared -g -o foreign.so foreign.c
optim ze:
vopt +acc test -0 opt_test
sim
vsimopt _test test -sv_|lib foreign
all:
worklib conpile foreign optimnmize sim
cl ean:
rm-rf work transcript vsimwf foreign.so dpi _types.h

The five targets in the Makefile are:

Line 1 —worklib: Thevlib command creates the work library where everything will be
compiled to.

Lines 4-5 —compile: The viog command invokes the viog compiler on the test.sv
sourcefile.

Lines 7-8 —foreign: The gcc command invokes the gcc C compiler on the foreign.c
source file and creates a shared object (foreign.so) that will be loaded during simulation.
Note that this command assumes that you have the MTI_HOME environment variable
set to the QuestaSim installation directory.

Lines 10-11 — optimize: The vopt command initiates optimization of the design. The
+acc option provides full visibility into the design for debugging purposes. The -0
option is required for naming the optimized design object (in this case, opt_test).

Lines 13-14 —sim: The vsim command invokes the simulator using the optimized
design object opt_test. The-sv_lib option specifies the shared object to be loaded during
simulation. Without this option, the simulator will not be able to find any imported (C)
functions you've defined.

Explore the windows.bat File

A windows.bat file has been included for Windows users (Figure 16-4).

Figure 16-4. The windows.bat File for Compiling and Running in Windows -

Data Passing Lab

Questa SV/AFV Tutorial, v6.4c 207

Using SystemVerilog DPI for Data Passing

~NOoO 0D WN

vlib work
vl og test.sv -dpi header dpi_types.h
vopt +acc test -0 opt_test

gcc -1 9Vl _HOVE% i ncl ude -shared -g -o foreign.dll foreign.c -Intipli -L

9MITI _HOVE% wi n32

8
9
10

vsim-i opt_test -sv_lib foreign -do "view source"

The windows.bat file compiles and runs the simulation as follows:

Line 1 —Thevlib command creates the work library where everything will be compiled
to.

Line 3 - The vlog command invokes the viog compiler on the test.sv sourcefile.

Line 5 — The vopt command initiates optimization of the design. The +acc option
provides full visibility into the design for debugging purposes. The -0 option is required
for naming the optimized design object (in this case, opt_test).

Line 7— The gcc command compiles the foreign.c source file. The -1 option is used to
specify adirectory to search for include files. The -shared option tells gcc to create a
shared library asthe output (i.e. compile AND link). The -g option adds debugging code
to the output. The -0 option creates an output library called foreign.dil. The -Imtipli
option is used to specify acompiled library that isto be included when trying to resolve
all the functions used in the C/C++ code being compiled. The -L option specifiesa
directory to search for libraries specified in the -I option.

Note

The gcc command assumes that you have the MTI_ HOME environment variable set to
the QuestaSim installation directory.

Line 9— The vsim command invokes the smulator using the opt_test optimized design
object. The-sv_lib option tells the simulator to look in the foreign.dll library for C
design objects that can be used in the SystemVerilog simulation. The -do " view
source" option opens the Source window and displays the test.sv source code.

Run the Simulation

Once in simulation with the test.sv modul e loaded, you can use the Step Over command =
button to advance through the simulation. Thiswill simply set values of different types of b

Verilog objects and send the data over to C for print out to the screen.

1

(For UNIX and Linux) Right-click the test instance in the Workspace window and select
View Declaration from the popup menu that appears. Thiswill open a Source window
and display the test.sv source code.

208

Questa SV/AFV Tutorial, v6.4c

Using SystemVerilog DPI for Data Passing

2. Click the Step Over button. With thisfirst step you should be on line #12 in test.sv
(indicated by the blue arrow in the Source window - see Figure 16-5) where we print out
the value of int_var —which isdefined as an int on line #6.

Figure 16-5. Line 12 of test.sv in the Source Window

6 int int_ war;
7 bit bit_ wvar;
a logic logic var:
9
10 initial
11 begin
12 &p print _int (int wvar);
13 int wvar = 1;
14 print int (int_ wvar);

Nothing has been assigned to int_var yet, so it should have its default initial value of O.
If you look in the Objects window, you should see that int_var isindeed equal to O
(Figure 16-6).

Figure 16-6. The Value of int_var is Currently O
| tliEE:t:E:
*[Name [Value [Kind [Mode |
4 int_var 1] Int [nternal

1] Bit [nternal
!

logic_war = Regizter Internal

3. Click the Step Over button again. Thiswill call the imported C function print_int with
int_var asitsinput parameter. If you look in the Transcript window after thisline
executes, you should see the following message:

Just received a value of 0.
That's what we expect to happen. So far, so good.

4. Nextwesetint var toavalueof 1. Click the Step Over button and you will seethevalue
of int_var change to 1 in the Objects window.

5. Now do another Step Over and you should see a 1 being printed in the Transcript
window thistime (Figure 16-7).

Questa SV/AFV Tutorial, v6.4c 209

Using SystemVerilog DPI for Data Passing

Figure 16-7. The Value of int_var Printed to the Transcript Window

Transcript

WS 4 step -over .
WS B step -over
Just received a value af 1.

W51k B

6. With the next two steps (click Step Over twice), we change int_var to -12 and print

again. Y ou should get the idea now. Both positive and negative integers are getting set
and printed properly.

Next we are going to use the print_int function to print the value of bit_var, which is

defined as a bit type on line #7. It also has adefault initial value of 0, so you can guess
what will be printed out.

Click Step Over again and verify the results in the Objects window (Figure 16-8) and in
the Transcript window (Figure 16-9).

Figure 16-8. The Value of bit_var is 0.
Oh | ects

*|Name |Value |Kind _[Modz |

F

ink_twar 12 Tals Internal

4 hit_var 0 Bit Irternal
4 logic_var = Reqister |nternal

Figure 16-9. Transcript Shows the Value Returned for bit_var

Transcript

Just recernved a value of 12 -
WSk B step -over
Just receirved a value of O

WS 9

8. Click Step Over twice to set bit_var to a1l and print to the transcript.

9. Click Step Over to set bit_var to X.

10.

Look in the Objects window. The variable didn't go to X. It went to 0. Why?

Remember that the bit type is a 2-state type. If you try to assignan X or aZ, it gets
converted to 0. So we get a0 instead, and that's what should get printed.

Click Step Over for the print_int function and verify that avalue of 0 is printed.

Now let's try some 4-state values. Y ou should be on line #22 now wherelogic var isa
4-state "logic" type being assigned a 1.

210

Questa SV/AFV Tutorial, v6.4c

Using SystemVerilog DPI for Data Passing

11.

12.
13.
14.

Click Step Over to go to line #23. Y ou should see the value of logic_var change from X
to 1 in the Objects window.

Click Step Over to call print_int again and print the value of logic_var to the transcript.
Click Step Over to set logic_var to X.

Click Step Over to print logic_var. You should be on line #26 now. Look at the
transcript and you will see that avalue of O is printed instead of X. Why? Let’slook into
the source code to see what happened.

Look at the foreign.c filein Figure 16-1, which is the C source for our imported
functions. In line 3, the print_int function is expecting an integer (int) asitsinput. That
works fine when we were sending integers. But now we are working with 4-state data
types, which allow X and Z values. How isthat kind of data going to cross over the
boundary, and what isit going to look like when it gets over to C? What about user
defined types and the many other types of data we can send back and forth? How are
you supposed to know how to write your C functionsto accept that kind of data properly
and/or send it back to Verilog properly?

Fortunately, the answer to all these questionsisthat you don't really have to know the
fine details. The SystemVerilog language defines this data mapping for you.
Furthermore, QuestaSim will create a C header file for you during compilation that you
can reference in your C code. All the function prototypes, data type definitions, and
other important pieces of information are made available to you viarthis header file.

If you look at the compile target in the Makefile (Figure 16-3) you will see an optionin
the viog command called -dpiheader with an output file name as its argument. As vlog
compiles your Verilog sourcefile, it analyzes any DPI import/export statements and
creates a C header file with what it knows to be the correct way to define the prototypes
for your imported/exported functions/tasks. In this lesson, we call the file dpi_types.h
(Figure 16-10).

Figure 16-10. The dpi_types.h File

Questa SV/AFV Tutorial, v6.4c 211

Using SystemVerilog DPI for Data Passing

/* MTI_DPl */

/*
* Copyright 2004 Mentor Graphics Corporation.

Not e:
This file is automatically generated.
Pl ease do not edit this file - you will |ose your edits.

OCO~NOUITRWN P

Settings when this file was generated:
PLATFORM = ' wi n32'

12 * Info = SE 6.1c 2005. 11

13 */

14 #ifndef | NCLUDED _DPI _TYPES

15 #define | NCLUDED_DPI _TYPES

* % X X X X X

17 #ifdef __cplusplus
18 extern "C' {
19 #endif

21 #include "svdpi.h"

23 DPI _DLLESPEC
24 void

25 print_int(

26 int int_in);

28 DPl _DLLESPEC

29 void

30 print_Ilogic(

31 svLogic logic_in);

33 #ifdef __cplusplus
34 } /* extern "C' */
35 #endif

37 #endif /* | NCLUDED */

At thetop of thisfileisinformation for internal DPI purposes. But if you go downto line
25, you'll see afunction prototype for the print_int function. As expected, the input
parameter is an int type.

Just below this function is the prototype for the print_logic function, which has an input
parameter of type "svLogic" (i.e. SystemVerilog Logic). Thisfile includes another
header file called svdpi.h, which is part of the SystemV erilog language and is shipped in
the QuestaSim installation directory (that'swhy we have "-1$(MTI_HOME)/include" on
the command line for C compilation in the Makefile's "foreign” target — see

Figure 16-3). ThissvLogic typeis basicaly an unsigned char.

When you put #include dpi_types.h in your C source file, all these function prototypes
and data types will be made available to you. In fact, we strongly recommend that you
use this file when writing the C code that will interface with Verilog via DPI.

Look back at the test.sv file (Figure 16-2) and look for the DPI import statements. There
isonefor print_int and one for print_logic. The viog compiler looks at these statements,
sees the names of the functions being imported along with their parameters and return
values (in Verilog terms), and then creates the correct DPI header file for you. In the
case of the print_logic function, it saw that the input parameter was of type "logic". So it

212

Questa SV/AFV Tutorial, v6.4c

Using SystemVerilog DPI for Data Passing

put logic's counterpart of "svLogic" in the header file. Now both elements of the dual
personality for this particular object are defined and everything should pass over to C

properly.

Let's go back to simulation. We should be on line #26, just after the point where the bad
logic value of 0 got printed instead of an X. Now that we know we were using the wrong
function for this particular type of data, we will use the print_logic function instead.

15. Click Step Over to execute thisline. The X valueis printed out thistime (Figure 16-11).
Y ou can take alook at the foreign.c file to see how this was accomplished.

Figure 16-11. The Transcript Shows the Correct Value of logic X

Tranzcript

WSk 155 step -over 1=
WSIM 16> step -ower

Juzt received a value of 0.

WSk 17 step -over

Juzt received a value of logic =,

WSIM 18> -

Basically, 4-state values are represented as 0, 1, 2, and 3 in their canonical form. The
valuesyou seein the switch statement inside the print_logic function are #define'd in the
svdpi.h file for you so that you can keep everything straight. Again, if you use the DPI
header filein your C code, you can just use this stuff and everything will work properly.

Go ahead and step through afew more statements and you can seethat logic_var gets set
to some other 4-state values and we print them correctly using the print_logic function.

Lesson Wrap-Up

Thereis certainly much more involved with passing data back and forth across the boundary
between C and Verilog using DPI. What about user-defined types? What about arrays? Structs?
64-bit integers? This particular subject can get into some pretty hefty detail, and we've aready
covered quite a bit here. Hopefully, this lesson has helped you understand the most basics of
passing data through the interface. Most important of all, it should give you an understanding of
how to make use of the DPI header file that vlog creates in order to make sure your C codeis
written properly to interface with SystemVerilog.

1. Select Smulate> End Simulation. Click Yes.

Questa SV/AFV Tutorial, v6.4c 213

Using SystemVerilog DPI for Data Passing

214 Questa SV/AFV Tutorial, v6.4c

Chapter 17
Comparing Waveforms

Introduction

Waveform Compare computes timing differences between test signals and reference signals.
The general procedure for comparing waveforms has four main steps:

1. Select the simulations or datasets to compare
2. Specify the signals or regions to compare
3. Run the comparison
4. View the comparison results
In this exercise you will run and save a simulation, edit one of the sourcefiles, run the

simulation again, and finally compare the two runs.

Note
The functionality described in this tutorial requires a compare license feature in your

QuestaSim license file. Please contact your Mentor Graphics sales representative if you
currently do not have such afeature.

Design Files for this Lesson

The sample design for this lesson consists of afinite state machine which controls a behavioral
memory. The testbench test_sm provides stimulus.

The QuestaSim installation comes with Verilog and VHDL versions of thisdesign. Thefilesare
located in the following directories:

Verilog — <install_dir>/examples/tutorials/verilog/compare
VHDL —<install_dir>/examples/tutorials/vhdl/compare

This lesson uses the Verilog version in the examples. If you have a VHDL license, use the
VHDL version instead. When necessary, instructions distinguish between the Verilog and
VHDL versions of the design.

Related Reading
User's Manual sections: Waveform Compare and Recording Simulation Results With Datasets.

Questa SV/AFV Tutorial, v6.4c 215

Comparing Waveforms
Creating the Reference Dataset

Creating the Reference Dataset

The reference dataset is the .wif file that the test dataset will be compared against. It can be a
saved dataset, the current simulation dataset, or any part of the current simulation dataset.

In this exercise you will use aDO fileto create the reference dataset.

1. Create anew directory and copy thetutorial filesinto it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/questasim/examples/tutorial s/verilog/compare to the new directory.

If you have aVHDL license, copy thefilesin
<install_dir>/questasim/examples/tutorial s/'vhdl/compare instead.

2. Start QuestaSim and change to the exercise directory.

If you just finished the previous lesson, QuestaSim should already be running. If not,
start QuestaSim.

a Typevsim at aUNIX shell prompt or use the QuestaSim icon in Windows.
If the Welcome to QuestaSim dialog appears, click Close.
b. Select File> Change Directory and change to the directory you created in step 1.
3. Executethelesson DOfile.
a. Typedogold_sim.do at the QuestaSim> prompt.
The DO file does the following:
* Creates and maps the work library
* Compilesthe Verilog and VHDL files
* Loads the simulator with optimizations turned off (vsim -novopt)
* Runsthe ssimulation and saves the results to a dataset named gold.wif
e Quitsthe simulation

Fedl free to open the DO file and look at its contents.

Creating the Test Dataset

The test dataset is the .wif file that will be compared against the reference dataset. Like the
reference dataset, the test dataset can be a saved dataset, the current simulation dataset, or any
part of the current simulation dataset.

216 Questa SV/AFV Tutorial, v6.4c

Comparing Waveforms
Creating the Test Dataset

To simplify matters, you will create the test dataset from the simulation you just ran. However,
you will edit the testbench to create differences between the two runs.

Verilog

1. Edit the testbench.

VHDL

a
b.

d.

Select File> Open and open test_sm.v.
Scroll to line 122, which looks like this:
@ (posedge cl k) wt_wd(' hl10, ' haa);
Change the data pattern’aa’ to "ab’:

@ (posedge cl k) wt_wd(' hl10, "' hab);

Select File > Save to save thefile.

Compile the revised file and rerun the simulation.

a

Type do sec_sim.do at the QuestaSim> prompt.

The DO file does the following:

* Re-compilesthe testbench

» Addswaves to the Wave window

* Loadsthe simulator with optimizations turned off (vsim -novopt)

¢ Runsthe simulation

Edit the testbench.

a
b.

d.

Select File > Open and open test_sm.vhd.
Scroll to line 151, which looks like this:
wt_wd (16#10#, 16#aa#, clk, into);
Change the data pattern’aa to'ab’:

wt_wd (16#10#, 16#ab#, clk, into);

Select File > Save to save thefile.

Compile the revised file and rerun the simulation.

a

Type do sec_sim.do at the QuestaSim> prompt.
The DO file does the following:

* Re-compilesthe testbench

Questa SV/AFV Tutorial, v6.4c 217

Comparing Waveforms
Comparing the Simulation Runs

* Addswaves to the Wave window
* Loads the simulator with optimizations turned off (vsim -novopt)

* Runsthe simulation

Comparing the Simulation Runs

QuestaSim includes a Comparison Wizard that walks you through the process. Y ou can aso
configure the comparison manually with menu or command line commands.

1. Create acomparison using the Comparison Wizard.
a. Select Tools> Waveform Compare > Comparison Wizard.

b. Click the Browse button and select gold.wlf as the reference dataset (Figure 17-1).
Recall that gold.wif is from the first smulation run.

Figure 17-1. First dialog of the Waveform Comparison Wizard

Comparison Wizard e =10 x|

The firgt gtep in creating a
comparnizon iz to open the reference

and tegt datazets [wif files].
qold, wif ;I Browse... |
Either datazet can be a zaved wif file

— Reference D atazet

or a datazet that iz already opened.

— Test Datazet
llze the Browse buttons to browse far

a saved dataset, or click the down e st
arrow ko zelect a file from the datazet

selection history. ¥ pdate comparnizon after sach n

c. Leaving thetest dataset set to Use Current Simulation, click Next.
d. Select Compare All Signalsin the second dialog (Figure 17-2) and click Next.

Figure 17-2. Second dialog of the Waveform Comparison Wizard

Comparison Wizard 101 x|

With the reference and test datazets
zelected, the nest step iz to zelect a
comparnizon method.

— Comparizaon kMethod

Compare &l Signals - comparez all | %7 iZHNRArE 21 2ldnals
zighalz in the test datazet againzt the ~
sighalz in the reference dataset. Compare Top Level Paorts

Compare Top Level Paorts - compares " Specify Comparizan by Signal
the top level ports of the zelected
datazets. " Specify Comparizon by Fegion

e R s s T B e e

218 Questa SV/AFV Tutorial, v6.4c

Comparing Waveforms
Viewing Comparison Data

e. Inthe next three dialogs, click Next, Compute Differences Now, and Finish,
respectively.

QuestaSim performs the comparison and displays the compared signalsin the Wave
window.

Viewing Comparison Data

Comparison data is displayed in the Workspace, Transcript, Objects, Wave and List window
panes. Compare objects are denoted by a yellow triangle.

The Compare tab in the Workspace pane shows the region that was compared;

The Transcript pane shows the number of differences found between the reference and test
datasets;

The Objects pane shows comparison differences when you select the comparison object in the
Compare tab of the Workspace (Figure 17-3).

Figure 17-3. Comparison information in the Workspace and Objects panes
Objects o H A X

|‘l"|Instann::e
[+ 273
[+ 23
[%
[+ 27
[+ 273
[+ 273
[+ 27
[+ 27
B4
B4

N I oA

@ qold ﬁ Compare [|

Comparison Data in the Wave Window

The Wave window displays comparison information as follows:

» timing differences are denoted by ared X’sin the pathnames column (Figure 17-4),

Questa SV/AFV Tutorial, v6.4c 219

Comparing Waveforms
Viewing Comparison Data

Figure 17-4. Comparison objects in the Wave window

m W ef FE
[

(=}

Mo Data-

sm.. |-Mo Data-

- .. | Mo Data-

. |-Mao Data-

Mo D ata-

Ma D ata-

& Mo Data-

Mo D ata-
i

I o FR0000 pz
Cursar 1 0 ps o
P AN Er Tl 1]]

1 M wWave l @ test =m.w I ﬂﬂ

* red areasin the waveform view show the location of the timing differences,
» redlinesin the scrollbars also show the location of timing differences,
* and, annotated differences are highlighted in blue.

The Wave window includes six compare icons that let you quickly jump between differences
(Figure 17-5).

Figure 17-5. The compare icons
14 e e o o8 o

From left to right, the icons do the following: find first difference, find previous annotated
difference, find previous difference, find next difference, find next annotated difference, find
last difference. Use these icons to move the selected cursor.

The compare icons cycle through differences on all signals. To view differencesin only a
selected signal, use <tab> and <shift> - <tab>.

Comparison Data in the List Window

Y ou can also view the results of your waveform comparison in the List window.

1. Add comparison datato the List window.

220 Questa SV/AFV Tutorial, v6.4c

Comparing Waveforms
Saving and Reloading Comparison Data

a. Sdect View > List from the Main window menu bar.

b. Dragthetest_smcomparison object from the compare tab of the Main window to the
List window.

c. Scroll down the window.

Differences are noted with yellow highlighting (Figure 17-6). Differences that have
been annotated have red highlighting.

Figure 17-6. Compare differences in the List window

N JRI=TEY

File Edit Wiew &dd Tools Window

|DsE& s B g% o

compare: ftest_sm/hout wire<: ‘I

PE— compare: ftest sm/houtof<routo £,
delta—,

420000 40| 000000O0O0O0OoO000000000000000000000
431000 +1 | 000000O0Q0QOo0000000000000000000000
435000 40| 0OOOO0O0OQOOO000000000000000000000
440000 40| 000000O0OQO0000000000000000000000
450000 40| 00OO00O0O0OOO000000000000000000000
451000 +1 | 000000O0Q0OQO0O000000000000000000000
451000 +2 | 00O000O0QOOO000000000000000000000
455000 40| 00OO00O0OOQOO000000000000010101010
460000 40| 000000O0O0O0OO000000000000010101010
.I:II:IIIIEIDDDDDDDDDDDDDDDDDDDDlDlDlI:IlI:I
470000 40| 000000000Oo0000000000000010101010
471000 +1 | 00O0000O0OOOO000000000000010101010
471000 +z | 00OO000O0QOOO000000000000010101010
475000 40| 00000000O0Oo0000000000000010101010
430000 40| 00OOO0O0OOOOO000000000000010101010
430000 40| 00000000000000000000000010101010 (K
431000 41| 0000000Q0OOO000000000000010101010 (i

oooooooooooooo0ooooonn
ooooooaooooooo0ooooonn
ooooooaooooooo0ooooonn
ooooooaooooo00000000n
ooooooaooooooo0ooooonn
ooooooaooooooo0ooooonn
ooooooaooooooo0ooooonn
DDDDDDDDDDDDDDDDDDDDD-J
Qoooooaooooooo0ooooonn
(i lniufalaiuinininiuniuiuininiafujuinyuyn]
ooooooaooooooo0ooooonn
ooooooaooooo00000000n
ooooooaooooooo0ooooonn
ooooooaooooooo0ooooonn
ooooooaooooooo0ooooonn
ooooooaooooo000o0ao0n
DDDDDDDDDDDDDDDDDDDDDd

163 lines | | 2

' = =
' (=R S S S = R ST ST

I S e B S N
HF R ORRRR

Saving and Reloading Comparison Data

Y ou can save comparison data for later viewing, either in atext file or in files that can be
reloaded into QuestaSim.

To save comparison data so it can be reloaded into QuestaSim, you must save two files. First,
you save the computed differences to one file; next, you save the comparison configuration
rules to a separate file. When you reload the data, you must have the reference dataset open.

1. Savethe comparison datato atext file.

a. Inthe Main window, select Tools> Waveform Compare > Differences> Write
Report.

Questa SV/AFV Tutorial, v6.4c 221

Comparing Waveforms
Saving and Reloading Comparison Data

b. Click Save.
This saves compare.txt to the current directory.

c. Typenotepad compare.txt at the VSIM> prompt to display the report
(Figure 17-7).

Figure 17-7. Coverage data saved to a text file

||E

Motepad

File Edit Window

h
[o]

£ compare. tet
Total signals compared = 11
Total primary differences = 6
Total secondary differences = 6

HNumber of primary sSighals with differences = 4

Diff nuwber 1, From time 135 ns delta 0 Lo Cime 155 ns delta 0.
gold:/test_sm/into = 00000000000000000000000010101010
Sim:/test_amdinto = 00000000000000000000000010101011

Diff nuwber 2, From time 135 ns delta 0 Lo Cime 155 ns delta 0.
gold:/test_am/into[0] = 0O

Sim:/test_sam/into[0] = 1

Diff nwber 3, From time 171 ns delta 1 Lo tLime 191 ns delta 1.
gold:/test_smf/dat = 00000000000000000000000010101010
Sim:/test_amd/dat = 00000000000000000000000010101011

Diff nuwber 4, From time 171 ns delta 1 Lo Lime 191 ns delta 1.
gold:/test_smidat[0] = StO

sim:/test_smi/dat[0] = 3tl

Diff nuwber 5, From time 409 ns delta 1 Lo Cinme 411 ns delta 2.
gold:/test_smf/dat = 00000000000000000000000010101010
Sim:/test_amd/dat = 00000000000000000000000010101011

Diff nuwber 6, From time 409 ns delta 1 Lo Cime 411 ns delta 2.
gold:/test_smidat[0] = StO

sim:/test_smi/dat[0] = 3tl

Diff nuwber 7, From time 431 ns delta 1 Lo Cinme 491 ns delta 1.

1Al S e B T Yot S e e e B e B

d. Close Notepad when you have finished viewing the report.
2. Savethe comparison datain files that can be reloaded into QuestaSim.
a. Select Tools > Waveform Compar e > Differences > Save.
b. Click Save.
This saves compare.dif to the current directory.
c. Select Tools> Waveform Compare > Rules> Save.
d. Click Save.

This saves compare.rul to the current directory.

222 Questa SV/AFV Tutorial, v6.4c

Comparing Waveforms
Saving and Reloading Comparison Data

e. Select Tools> Waveform Compare> End Comparison.
3. Reload the comparison data.
a. With the sim tab of the Workspace active, select File > Open.
b. Change the Files of Typeto Log Files (*.wlf) (Figure 17-8).
Figure 17-8. Displaying Log Files in the Open dialog

File narme; I j Open I
- Cancel |

%

Files of type: Laog Files [* valf]

c. Double-click gold.wlf to open the dataset.
d. Select Tools> Waveform Compare > Reload.

Since you saved the data using default file names, the dialog should already have the
correct Waveform Rules and Waveform Difference files specified (Figure 17-9).

Figure 17-9. Reloading saved comparison data
Reload and Redizplay Compare Differences M=l E3

—waveform Fules file name

Icumpare.rul Browse...

—waveform Difference file name

cormpare. dif Browse...

ok, Cancel

e. Click OK.

The comparison reloads. Y ou can drag the comparison object to the Wave or List
window to view the differences again.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation and close
the gold.wif dataset.

1. Typequit -sim at the VSIM> prompt.
2. Typedataset close gold at the QuestaSim> prompt.

Questa SV/AFV Tutorial, v6.4c 223

Comparing Waveforms
Saving and Reloading Comparison Data

224 Questa SV/AFV Tutorial, v6.4c

Chapter 18
Automating Simulation

Introduction

Aside from executing a couple of pre-existing DO files, the previous lessons focused on using
QuestaSim in interactive mode: executing single commands, one after another, via the GUI
menus or Main window command line. In situations where you have repetitive tasks to
complete, you can increase your productivity with DO files.

DO files are scripts that allow you to execute many commands at once. The scripts can be as
simple as a series of QuestaSim commands with associated arguments, or they can be full-
blown Tcl programs with variables, conditional execution, and so forth. Y ou can execute DO
files from within the GUI or you can run them from the system command prompt without ever
invoking the GUI.

Note
D This lesson assumes that you have added the <install_dir>/questasinm/< platform>

directory to your PATH. If you did not, you will need to specify full paths to the tools
(i.e., vlib, vmap, vlog, vcom, and vsim) that are used in the lesson.

Related Reading
User’s Manual Chapter: Tcl and Macros (DO Files).

Practical Programming in Tcl and Tk, Brent B. Welch, Copyright 1997

Creating a Simple DO File

Creating DO filesis as smple as typing the commands in atext file. Alternatively, you can save
the Main window transcript asa DO file. In this exercise, you will use the commands you enter
in the Main window transcript to create a DO file that adds signals to the Wave window,
provides stimulus to those signals, and then advances the simulation.

1. Loadthetest_counter design unit.
a. If necessary, start QuestaSim.
b. Change to the directory you created in the "Basic Simulation” lesson.

c. Enter vam -voptargs="+acc" test_counter to load the design unit.

Questa SV/AFV Tutorial, v6.4c 225

Automating Simulation
Running in Command-Line Mode

2. Enter commands to add signals to the Wave window, force signals, and run the
simulation.

a. Select File> New > Source > Do to create anew DO file.
b. Enter the following commands into the source window:

add wave count
add wave cl k
add wave reset
force -freeze clk 0 0, 1 {50 ns} -r 100
force reset 1
run 100

force reset 0O
run 300

force reset 1
run 400

force reset 0O
run 200

3. Savethefile.

a Select File> Save As.

b. Typesim.dointhe File name: field and save it to the current directory.
4. Load the simulation again and use the DO file.

a. Enter quit -sim at the VSIM> prompt.

b. Enter vsim -voptargs="+acc" test_counter at the QuestaSim> prompt.

The -voptar gs="+acc” argument for the vsim command provides visibility into the
design for debugging purposes.

Note
D By default, QuestaSim optimizations are performed on all designs (see Optimizing
Designs with vopt).

c. Enter do sim.do at the VSIM> prompt.
QuestaSim executes the saved commands and draws the waves in the Wave window.

5. When you are done with this exercise, select File > Quit to quit QuestaSim.

Running in Command-Line Mode

We use the term "command-line mode" to refer to ssmulations that are run from a DOS/ UNIX
prompt without invoking the GUI. Several QuestaSim commands (e.g., vsim, vlib, vlog, etc.)
are actually stand-alone executables that can be invoked at the systemm command prompt.
Additionally, you can create a DO file that contains other QuestaSim commands and specify
that file when you invoke the simulator.

226 Questa SV/AFV Tutorial, v6.4c

Automating Simulation
Running in Command-Line Mode

1. Create anew directory and copy thetutorial filesinto it.

Start by creating a new directory for this exercise. Create the directory and copy the
following filesinto it:

* /<install_dir>/examples/tutorial s/verilog/automation/counter.v
* /<install_dir>/examples/tutorial s/'verilog/automation/stim.do

This lesson uses the Verilog file counter.v. If you have aVHDL license, use the
counter.vhd and stim.do filesin the /<install_dir>/examples/tutorial s'vhdl/automation
directory instead.

2. Create anew design library and compile the sourcefile.

Again, enter these commands at a DOS/ UNIX prompt in the new directory you created
instep 1.

a. Typevlib work at the DOS UNIX prompt.

b. For Verilog, typevlog counter.v at the DOS UNIX prompt. For VHDL, type vcom
counter.vhd.

3. CreateaDOfile.
a. Open atext editor.
b. Typethefollowing linesinto anew file:

list all signals in decinmal fornat
add list -decinal *

read in stinmulus
do stimdo

output results
wite |list counter.| st

quit the simulation
quit -f

c. Savethefilewith the name sim.do and place it in the current directory.
4. Run the batch-mode simulation.

a. Typevsim -voptargs="+acc" -c -do sim.do counter -wlf counter.wif at the DOY
UNIX prompt.

The -c argument instructs QuestaSim not to invoke the GUI. The -wlIf argument
saves the simulation resultsin aWLF file. This allows you to view the smulation
resultsin the GUI for debugging purposes.

5. View thelist output.

Questa SV/AFV Tutorial, v6.4c 227

Automating Simulation
Running in Command-Line Mode

a. Open counter.Ist and view the simulation results. Output produced by the Verilog
version of the design should look like the following:

ns / count er/ count
delta /counter/clk
/ count er/reset

0 +0 X z *
1 +0 0z *
50 +0 0 * *
100 +0 00~
100 +1 00O
150 +0 0*O0
151 +0 1*0
200 +0 100
1*0

250 +0

The oﬂtput may appear slightly different if you used the VHDL version.
6. View theresultsin the GUI.

Since you saved the simulation results in counter.wif, you can view them in the GUI by
invoking VSIM with the -view argument.

Note
Make sure your PATH environment variableis set with the current version of QuestaSim
at the front of the string.

a. Typevsim -view counter .wif at the DOS/ UNIX prompt.

The GUI opens and a dataset tab named "counter” is displayed in the Workspace
(Figure 18-1).

Figure 18-1. A Dataset in the Main Window Workspace

\Warkspace

Hlnstanl:e |Design unit |Design unik kype |'-.-'isi|:ui|il:y |

I counker counker Module +acc=<=naone

4 | | _,.
m Library @ counter | i Files EIE

b. Right-click the counter instance and select Add > To Wave > All itemsin region.
The waveforms display in the Wave window.

7. When you finish viewing the results, select File > Quit to close QuestaSim.

228 Questa SV/AFV Tutorial, v6.4c

Automating Simulation
Using Tcl with the Simulator

Using Tcl with the Simulator

The DO files used in previous exercises contained only QuestaSim commands. However, DO
filesarereally just Tcl scripts. This means you can include awhole variety of Tcl constructs
such as procedures, conditional operators, math and trig functions, regular expressions, and so
forth.

In this exercise, you create asimple Tcl script that tests for certain values on asignal and then
adds bookmarks that zoom the Wave window when that value exists. Bookmarks allow you to
save a particular zoom range and scroll position in the Wave window. The Tcl script aso
creates buttons in the Main window that call these bookmarks.

1. Createthe script.

a. Inatext editor, open anew file and enter the following lines:

proc add wave zoom {stine nun} {

echo "Bookmar ki ng wave $nunt

bookmark add wave "bk$numi “[expr $stine - 50] [expr $stine +
100]" O

add button "$nuni' [list bookmark goto wave bk$nuni

}
These commands do the following:

» Create anew procedure called "add wave zoom" that has two arguments, stime
and num.

» Create abookmark with azoom range from the current simulation time minus 50
time units to the current simulation time plus 100 time units.

e Add abutton to the Main window that calls the bookmark.
b. Now add these lines to the bottom of the script:
add wave -r /*

when {cl k' event and cl k="1"} {
echo "Count is [exa count]"

if {[exami ne count]== "00100111"} {
add_wave _zoom $now 1
} elseif {[exam ne count]== "01000111"} {

add_wave_zoom $now 2
}
lI'heﬁe commands do the following:
» Addal signalsto the Wave window.
* Useawhen statement to identify when clk transitions to 1.

* Examinethe value of count at those transitions and add a bookmark if itisa
certain value.

c. Savethe script with the name "add_bkmrk.do."

Questa SV/AFV Tutorial, v6.4c 229

Automating Simulation
Using Tcl with the Simulator

Save it into the directory you created in Basic Simulation.
2. Loadthetest_counter design unit.
a. Start QuestaSim.

b. Select File> Change Directory and change to the directory you saved the DO file
toin step 1c above.

c. Enter the following command at the QuestaSim> prompt:
vsim -voptargs="+acc" test_counter

3. Executethe DO file and run the design.
a. Typedoadd _bkmrk.do at the VSIM> prompt.
b. Typerun 1500 nsat the VSIM> prompt.
The simulation runs and the DO file creates two bookmarks.

It also creates buttons (labeled "1" and "2") on the Main window toolbar that jump to
the bookmarks (Figure 18-2).

Figure 18-2. Buttons Added to the Main Window Toolbar

File Edit Wiew Compile Simulate Add Transcript Tools 'y Lavouk Window Help

Workspare —— HE

‘l"IIr!stance |Design it |

[g Fvsim_capacity#

B test_counter _ Fast]
o) #INITIAL#17 test_counter(Fast)
Q@ #INITIAL#23 test_counter(Fast) 01001011
B LTRITTTAL alAA Lol e Lo.fEo LA ter count 01001011
| | | ter 5t0
JIL Library @ sim | Ei Files | B Memuri.ﬂll : MRS If;tllilmml

c. Click the buttons and watch the Wave window zoom on and scroll to the time when
count is the value specified in the DO file.

Lesson Wrap-Up

This concludes this lesson.

1. Select File > Quit to close QuestaSim.

230 Questa SV/AFV Tutorial, v6.4c

Automating Simulation
Using Tcl with the Simulator

Questa SV/AFV Tutorial, v6.4c 231

Automating Simulation
Using Tcl with the Simulator

232 Questa SV/AFV Tutorial, v6.4c

ABCDEFGHI JKLMNOPQRSTUVWXY Z

Index
— A — design optimization, 19
aCC, 66 documentation, 15
add dataflow command, 112 drivers, expanding to, 104
add wave command, 83 E
Assertions T
add to dataflow, 162 externa libraries, linking to, 58
debugging failures, 160 — F—
ignore assertions during simulation, 154 folders, in projects, 47
-nopsl argument to vsim, 154 format, saving for Wave window, 87
speeding debugging, 155 G
—B T gcc, 66
break icon, 32
breakpoints —H—
in SystemC modules, 75 hierarchy, displaying in Dataflow window, 112
setting, 32 L —
stepping, 35 libraries
—C — design library types, 21
C Debug, 75 linking to external libraries, 58
Code Coverage mapping t_o pqmanmtly, 62
excluding lines and files, 149 resource libraries, 21
reports, 150 working libraries, 21
Source window, 146 working, creating, 26
command-line mode, 226 linking to external libraries, 58
compile order, changing, 44 M
compiling your design, 20, 27 manuals, 15
-cover argument, 142 T
mapping libraries permanently, 62
coverage report command, 152 .
: memories
cursors, Wave window, 84, 97 .
changing values, 127
—D— initializing, 123
Dataflow window memory contents, saving to afile, 121
displaying hierarchy, 112 _N—
exp_andl ng to drivers/readers, 104 notepad command, 222
options, 112
tracing events, 106 — 0 —
tracing unknowns, 110 optimization, 19
dataset close command, 223 options, simulation, 50
design library

working type, 21

Questa SV/AFV Tutorial, v6.4c 233

ABCDEFGHI JKLMNOPQRSTUVWXY Z

— P —
Performance Analyzer

filtering data, 137
physical connectivity, 104
Profiler

profile details, 136

viewing profile details, 136
projects

adding itemsto, 42

creating, 41

flow overview, 20

organizing with folders, 47

simulation configurations, 50

—Q—

quit command, 59

— R —

radix command, 116

reference dataset, Waveform Compare, 216
reference signals, 215

run -al, 32

run command, 31

—S—
saving simulation options, 50
simulation
basic flow overview, 19
restarting, 33
running, 30
simulation configurations, 50
stepping after a breakpoint, 35
SystemC
setting up the environment, 66
supported platforms, 66
viewing in the GUI, 74

— T —
Tcl, using in the ssmulator, 229

test dataset, Waveform Compare, 216
test signals, 215

time, measuring in Wave window, 84, 97
toggle statistics, Signals window, 148
tracing events, 106

tracing unknowns, 110

—U—
unknowns, tracing, 110

—V —
vcom command, 116
vlib command, 116
vlog command, 116
vsim command, 26

— W —
Wave window
adding itemsto, 82, 90
cursors, 84, 97
measuring time with cursors, 84, 97
saving format, 87
zooming, 84, 93
Waveform Compare
reference signals, 215
saving and reloading, 221
test signals, 215
working library, creating, 20, 26

— X —
X values, tracing, 110

— 7 —
zooming, Wave window, 84, 93

234

Questa SV/AFV Tutorial, v6.4c

End-User License Agreement

The latest version of the End-User License Agreement is available on-line at:
www.mentor.com/terms_conditions/enduser.cfm

IMPORTANT INFORMATION

USE OF THIS SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS
LICENSE AGREEMENT BEFORE USING THE SOFTWARE. USE OF SOFTWARE INDICATES YOUR
COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH

IN THIS AGREEMENT. ANY ADDITIONAL OR DIFFERENT PURCHASE ORDER TERMS AND
CONDITIONS SHALL NOT APPLY.

END-USER LICENSE AGREEMENT (*Agreement”)

Thisis a legal agreement concerning the use of Software between you, the end user, as an authorized
representative of the company acquiring the license, and Mentor Graphics Corporation and Mentor Graphics
(Ireland) Limited acting directly or through their subsidiaries (collectively “Mentor Graphics’). Except for license
agreements related to the subject matter of this license agreement which are physically signed by you and an
authorized representative of Mentor Graphics, this Agreement and the applicable quotation contain the parties
entire under standing relating to the subject matter and supersedeall prior or contemporaneous agreements. | f you
do not agree to these terms and conditions, promptly return or, if received electronically, certify destruction of
Softwar e and all accompanying items within five days after receipt of Software and receive a full refund of any
license fee paid.

GRANT OF LICENSE. The software programs, including any updates, modifications, revisions, copies, documentation
and design data (“ Software”), are copyrighted, trade secret and confidential information of Mentor Graphics or its
licensors who maintain exclusive title to all Software and retain all rights not expressly granted by this Agreement.
Mentor Graphics grants to you, subject to payment of appropriate license fees, a nontransferable, nonexclusive license to
use Software solely: (a) in machine-readable, object-code form; (b) for your internal business purposes; (c) for the license
term; and (d) on the computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half
mile (800 meter) radius. Mentor Graphics' standard policies and programs, which vary depending on Software, license
fees paid or services purchased, apply to the following: (a) relocation of Software; (b) use of Software, which may be
limited, for example, to execution of asingle session by a single user on the authorized hardware or for arestricted period
of time (such limitations may be technically implemented through the use of authorization codes or similar devices); and
(c) support services provided, including eligibility to receive telephone support, updates, modifications, and revisions.

EMBEDDED SOFTWARE. If you purchased a license to use embedded software development (“ESD”) Software, if
applicable, Mentor Graphics grants to you a nontransferable, nonexclusive license to reproduce and distribute executable
files created using ESD compilers, including the ESD run-time libraries distributed with ESD C and C++ compiler
Software that are linked into a composite program as an integral part of your compiled computer program, provided that
you distribute these files only in conjunction with your compiled computer program. Mentor Graphics does NOT grant
you any right to duplicate, incorporate or embed copies of Mentor Graphics' real-time operating systems or other
embedded software products into your products or applications without first signing or otherwise agreeing to a separate
agreement with Mentor Graphics for such purpose.

BETA CODE. Software may contain code for experimental testing and evaluation (“Beta Code"), which may not be used
without Mentor Graphics' explicit authorization. Upon Mentor Graphics authorization, Mentor Graphics grants to you a
temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta Code without charge
for alimited period of time specified by Mentor Graphics. This grant and your use of the Beta Code shall not be construed
as marketing or offering to sell alicense to the Beta Code, which Mentor Graphics may choose not to release
commercialy in any form. If Mentor Graphics authorizes you to use the Beta Code, you agree to evaluate and test the
Beta Code under normal conditions as directed by Mentor Graphics. Y ou will contact Mentor Graphics periodically
during your use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of your
evaluation and testing, you will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths,
weaknesses and recommended improvements. Y ou agree that any written evaluations and all inventions, product
improvements, modifications or developments that Mentor Graphics conceived or made during or subsequent to this
Agreement, including those based partly or wholly on your feedback, will be the exclusive property of Mentor Graphics.
Mentor Graphics will have exclusive rights, title and interest in all such property. The provisions of this section 3 shall
survive the termination or expiration of this Agreement.

http://www.mentor.com/terms_conditions/enduser.cfm

4. RESTRICTIONS ON USE. You may copy Software only as reasonably necessary to support the authorized use. Each
copy must include all notices and legends embedded in Software and affixed to its medium and container as received from
Mentor Graphics. All copies shall remain the property of Mentor Graphics or its licensors. Y ou shall maintain arecord of
the number and primary location of all copies of Software, including copies merged with other software, and shall make
those records available to Mentor Graphics upon request. Y ou shall not make Software available in any form to any
person other than employees and on-site contractors, excluding Mentor Graphics competitors, whose job performance
requires access and who are under obligations of confidentiality. Y ou shall take appropriate action to protect the
confidentiality of Software and ensure that any person permitted access to Software does not disclose it or useit except as
permitted by this Agreement. Except as otherwise permitted for purposes of interoperability as specified by applicable
and mandatory local law, you shall not reverse-assemble, reverse-compile, reverse-engineer or in any way derive from
Software any source code. Y ou may not sublicense, assign or otherwise transfer Software, this Agreement or the rights
under it, whether by operation of law or otherwise (“attempted transfer”), without Mentor Graphics' prior written consent
and payment of Mentor Graphics' then-current applicable transfer charges. Any attempted transfer without Mentor
Graphics prior written consent shall be amaterial breach of this Agreement and may, at Mentor Graphics option, result in
the immediate termination of the Agreement and licenses granted under this Agreement. The terms of this Agreement,
including without limitation, the licensing and assignment provisions shall be binding upon your successors in interest
and assigns. The provisions of this section 4 shall survive the termination or expiration of this Agreement.

5. LIMITED WARRANTY.

5.1. Mentor Graphics warrants that during the warranty period Software, when properly installed, will substantially
conform to the functional specifications set forth in the applicable user manual. Mentor Graphics does not warrant
that Software will meet your requirements or that operation of Software will be uninterrupted or error free. The
warranty period is 90 days starting on the 15th day after delivery or upon installation, whichever first occurs. Y ou
must notify Mentor Graphics in writing of any nonconformity within the warranty period. This warranty shall not be
valid if Software has been subject to misuse, unauthorized modification or improper installation. MENTOR
GRAPHICS ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS
OPTION, EITHER (A) REFUND OF THE PRICE PAID UPON RETURN OF SOFTWARE TO MENTOR
GRAPHICS OR (B) MODIFICATION OR REPLACEMENT OF SOFTWARE THAT DOES NOT MEET THIS
LIMITED WARRANTY, PROVIDED YOU HAVE OTHERWISE COMPLIED WITH THIS AGREEMENT.
MENTOR GRAPHICS MAKES NO WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) SOFTWARE
WHICH IS LICENSED TO YOU FOR A LIMITED TERM OR LICENSED AT NO COST; OR
(C) EXPERIMENTAL BETA CODE; ALL OF WHICH ARE PROVIDED “ASIS.

5.2. THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS
NOR ITS LICENSORS MAKE ANY OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, WITH
RESPECT TO SOFTWARE OR OTHER MATERIAL PROVIDED UNDER THIS AGREEMENT. MENTOR
GRAPHICS AND ITS LICENSORS SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF
INTELLECTUAL PROPERTY.

6. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY
WOULD BE VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS
OR ITSLICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
(INCLUDING LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER
LEGAL THEORY, EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL MENTOR GRAPHICS OR ITS LICENSORS
LIABILITY UNDER THIS AGREEMENT EXCEED THE AMOUNT PAID BY YOU FOR THE SOFTWARE OR
SERVICE GIVING RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR
GRAPHICS AND ITS LICENSORS SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER. THE
PROVISIONS OF THIS SECTION 6 SHALL SURVIVE THE EXPIRATION OR TERMINATION OF THIS
AGREEMENT.

7. LIFE ENDANGERING ACTIVITIES. NEITHER MENTOR GRAPHICS NOR ITS LICENSORS SHALL BE
LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH THE USE OF SOFTWARE IN
ANY APPLICATION WHERE THE FAILURE OR INACCURACY OF THE SOFTWARE MIGHT RESULT IN
DEATH OR PERSONAL INJURY. THE PROVISIONS OF THIS SECTION 7 SHALL SURVIVE THE
EXPIRATION OR TERMINATION OF THISAGREEMENT.

8. INDEMNIFICATION. YOU AGREE TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND ITS
LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE, OR LIABILITY, INCLUDING
ATTORNEYS' FEES, ARISING OUT OF OR IN CONNECTION WITH YOUR USE OF SOFTWARE AS

10.

11.

12.

13.

14.

DESCRIBED IN SECTION 7. THE PROVISIONS OF THIS SECTION 8 SHALL SURVIVE THE EXPIRATION OR
TERMINATION OF THIS AGREEMENT.

INFRINGEMENT.

9.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against you alleging that
Software infringes a patent or copyright or misappropriates a trade secret in the United States, Canada, Japan, or
member state of the European Patent Office. Mentor Graphics will pay any costs and damages finally awarded
against you that are attributable to the infringement action. Y ou understand and agree that as conditions to Mentor
Graphics' obligations under this section you must: (a) notify Mentor Graphics promptly in writing of the action;
(b) provide Mentor Graphics all reasonable information and assistance to defend or settle the action; and (c) grant
Mentor Graphics sole authority and control of the defense or settlement of the action.

9.2. If an infringement claim is made, Mentor Graphics may, at its option and expense: (a) replace or modify Software so
that it becomes noninfringing; (b) procure for you the right to continue using Software; or (c) require the return of
Software and refund to you any license fee paid, |ess a reasonable allowance for use.

9.3. Mentor Graphics has no liability to you if infringement is based upon: (&) the combination of Software with any
product not furnished by Mentor Graphics; (b) the modification of Software other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of Software as part of an infringing process, (€) a
product that you make, use or sell; (f) any Beta Code contained in Software; (g) any Software provided by Mentor
Graphics' licensors who do not provide such indemnification to Mentor Graphics' customers; or (h) infringement by
you that is deemed willful. In the case of (h) you shall reimburse Mentor Graphicsfor its attorney fees and other costs
related to the action upon afina judgment.

9.4. THIS SECTION IS SUBJECT TO SECTION 6 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS AND YOUR SOLE AND EXCLUSIVE REMEDY WITH RESPECT TO
ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT OR TRADE SECRET MISAPPROPRIATION
BY ANY SOFTWARE LICENSED UNDER THIS AGREEMENT.

TERM. This Agreement remains effective until expiration or termination. This Agreement will immediately terminate
upon notice if you exceed the scope of license granted or otherwise fail to comply with the provisions of Sections 1, 2, or
4. For any other material breach under this Agreement, Mentor Graphics may terminate this Agreement upon 30 days
written notice if you are in material breach and fail to cure such breach within the 30 day notice period. If Software was
provided for limited term use, this Agreement will automatically expire at the end of the authorized term. Upon any
termination or expiration, you agree to cease all use of Software and return it to Mentor Graphics or certify deletion and
destruction of Software, including all copies, to Mentor Graphics' reasonable satisfaction.

EXPORT. Software is subject to regulation by local laws and United States government agencies, which prohibit export
or diversion of certain products, information about the products, and direct products of the products to certain countries
and certain persons. Y ou agree that you will not export any Software or direct product of Software in any manner without
first obtaining all necessary approval from appropriate local and United States government agencies.

RESTRICTED RIGHTS NOTICE. Software was developed entirely at private expense and is commercial computer
software provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the U.S. Government or a U.S.
Government subcontractor is subject to the restrictions set forth in the license agreement under which Software was
obtained pursuant to DFARS 227.7202-3(a) or as set forth in subparagraphs (¢)(1) and (2) of the Commercial Computer
Software - Restricted Rights clause at FAR 52.227-19, as applicable. Contractor/manufacturer is Mentor Graphics
Corporation, 8005 SW Boeckman Road, Wilsonville, Oregon 97070-7777 USA.

THIRD PARTY BENEFICIARY. For any Software under this Agreement licensed by Mentor Graphics from Microsoft
or other licensors, Microsoft or the applicable licensor is athird party beneficiary of this Agreement with the right to
enforce the obligations set forth herein.

AUDIT RIGHTS. You will monitor access to, location and use of Software. With reasonable prior notice and during
your normal business hours, Mentor Graphics shall have the right to review your software monitoring system and
reasonably relevant records to confirm your compliance with the terms of this Agreement, an addendum to this
Agreement or U.S. or other local export laws. Such review may include FLEXIm or FLEXnet report log files that you
shall capture and provide at Mentor Graphics' request. Mentor Graphics shall treat as confidential information all of your
information gained as aresult of any request or review and shall only use or disclose such information as required by law
or to enforce its rights under this Agreement or addendum to this Agreement. The provisions of this section 14 shall
survive the expiration or termination of this Agreement.

15.

16.

17.

CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. THIS AGREEMENT SHALL BE
GOVERNED BY AND CONSTRUED UNDER THE LAWS OF THE STATE OF OREGON, USA, IF YOU ARE
LOCATED IN NORTH OR SOUTH AMERICA, AND THE LAWS OF IRELAND IF YOU ARE LOCATED
OUTSIDE OF NORTH OR SOUTH AMERICA. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusive jurisdiction of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when the
laws of Ireland apply. Notwithstanding the foregoing, all disputesin Asia (except for Japan) arising out of or in relation to
this Agreement shall be resolved by arbitration in Singapore before a single arbitrator to be appointed by the Chairman of
the Singapore International Arbitration Centre (“SIAC”) to be conducted in the English language, in accordance with the
Arbitration Rules of the SIAC in effect at the time of the dispute, which rules are deemed to be incorporated by reference
in this section 15. This section shall not restrict Mentor Graphics' right to bring an action against you in the jurisdiction
where your place of businessis located. The United Nations Convention on Contracts for the International Sale of Goods
does not apply to this Agreement.

SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisionswill remainin
full force and effect.

PAYMENT TERMS AND MISCELLANEOUS. You will pay amounts invoiced, in the currency specified on the
applicable invoice, within 30 days from the date of such invoice. Any past due invoices will be subject to the imposition
of interest charges in the amount of one and one-half percent per month or the applicable legal rate currently in effect,
whichever is lower. Some Software may contain code distributed under a third party license agreement that may provide
additional rights to you. Please see the applicable Software documentation for details. This Agreement may only be
modified in writing by authorized representatives of the parties. Waiver of terms or excuse of breach must be in writing
and shall not constitute subsequent consent, waiver or excuse.

Rev. 060210, Part No. 227900

	Bookcase
	Table of Contents
	List of Examples
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Assumptions
	Where to Find Our Documentation
	Download a Free PDF Reader With Search

	Mentor Graphics Support
	Before you Begin
	Example Designs

	Chapter 2 Conceptual Overview
	Design Optimizations
	Basic Simulation Flow
	Project Flow
	Multiple Library Flow
	Debugging Tools

	Chapter 3 Basic Simulation
	Create the Working Design Library
	Run the Simulation
	Set Breakpoints and Step through the Source
	Navigating the Interface

	Chapter 4 Projects
	Create a New Project
	Add Objects to the Project
	Changing Compile Order (VHDL)
	Compile the Design
	Load the Design

	Organizing Projects with Folders
	Add Folders
	Moving Files to Folders

	Simulation Configurations

	Chapter 5 Working With Multiple Libraries
	Creating the Resource Library
	Creating the Project
	Linking to the Resource Library
	Linking in Verilog
	Linking in VHDL

	Permanently Mapping VHDL Resource Libraries

	Chapter 6 Simulating Designs With SystemC
	Setting up the Environment
	Preparing an OSCI SystemC design
	Compiling a SystemC-only Design
	Mixed SystemC and HDL Example
	Viewing SystemC Objects in the GUI
	Setting Breakpoints and Stepping in the Source Window
	Examining SystemC Objects and Variables
	Removing a Breakpoint

	Chapter 7 Analyzing Waveforms
	Loading a Design
	Add Objects to the Wave Window
	Zooming the Waveform Display
	Using Cursors in the Wave Window
	Working with a Single Cursor
	Working with Multiple Cursors

	Saving and Reusing the Window Format

	Chapter 8 Creating Stimulus With Waveform Editor
	Load a Design Unit
	Create Graphical Stimulus with a Wizard
	Edit Waveforms in the Wave Window
	Save and Reuse the Wave Commands
	Exporting the Created Waveforms
	Simulating with the Testbench File
	Importing an EVCD File

	Chapter 9 Debugging With The Dataflow Window
	Exploring Connectivity
	Tracing Events
	Tracing an X (Unknown)
	Displaying Hierarchy in the Dataflow Window

	Chapter 10 Viewing And Initializing Memories
	View a Memory and its Contents
	Navigate Within the Memory

	Export Memory Data to a File
	Initialize a Memory
	Interactive Debugging Commands

	Chapter 11 Analyzing Performance With The Profiler
	View Profile Details
	Filtering and Saving the Data

	Chapter 12 Simulating With Code Coverage
	Coverage Statistics in the Main window
	Coverage Statistics in the Source Window
	Toggle Statistics in the Objects Pane
	Excluding Lines and Files from Coverage Statistics
	Creating Code Coverage Reports

	Chapter 13 Debugging With PSL Assertions
	Compile the Example Design
	Load and Run Without Assertions
	Using Assertions to Speed Debugging
	Debugging the Assertion Failure

	Chapter 14 SystemVerilog Assertions and Functional Coverage
	Design Files for this Lesson
	Understanding the Interleaver Design
	The Testbench

	Related Reading
	Run the Simulation without Assertions
	Run the Simulation with Assertions
	Debugging with Assertions
	Exploring Functional Coverage
	Creating Functional Coverage Reports
	Lesson Wrap-Up

	Chapter 15 Using the SystemVerilog DPI
	Chapter 16 Using SystemVerilog DPI for Data Passing
	Mapping Verilog and C

	Chapter 17 Comparing Waveforms
	Creating the Reference Dataset
	Creating the Test Dataset
	Comparing the Simulation Runs
	Viewing Comparison Data
	Comparison Data in the Wave Window
	Comparison Data in the List Window

	Saving and Reloading Comparison Data

	Chapter 18 Automating Simulation
	Creating a Simple DO File
	Running in Command-Line Mode
	Using Tcl with the Simulator

	Index
	End-User License Agreement
	Documentation Feedback

